1
|
Perini G, Palmieri V, Papait A, Augello A, Fioretti D, Iurescia S, Rinaldi M, Vertua E, Silini A, Torelli R, Carlino A, Musarra T, Sanguinetti M, Parolini O, De Spirito M, Papi M. Slow and steady wins the race: Fractionated near-infrared treatment empowered by graphene-enhanced 3D scaffolds for precision oncology. Mater Today Bio 2024; 25:100986. [PMID: 38375317 PMCID: PMC10875229 DOI: 10.1016/j.mtbio.2024.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Surgically addressing tumors poses a challenge, requiring a tailored, multidisciplinary approach for each patient based on the unique aspects of their case. Innovative therapeutic regimens combined to reliable reconstructive methods can contribute to an extended patient's life expectancy. This study presents a detailed comparative investigation of near-infrared therapy protocols, examining the impact of non-fractionated and fractionated irradiation regimens on cancer treatment. The therapy is based on the implantation of graphene oxide/poly(lactic-co-glycolic acid) three-dimensional printed scaffolds, exploring their versatile applications in oncology by the examination of pro-inflammatory cytokine secretion, immune response, and in vitro and in vivo tumor therapy. The investigation into cell death patterns (apoptosis vs necrosis) underlines the pivotal role of protocol selection underscores the critical influence of treatment duration on cell fate, establishing a crucial parameter in therapeutic decision-making. In vivo experiments corroborated the profound impact of protocol selection on tumor response. The fractionated regimen emerged as the standout performer, achieving a substantial reduction in tumor size over time, surpassing the efficacy of the non-fractionated approach. Additionally, the fractionated regimen exhibited efficacy also in targeting tumors in proximity but not in direct contact to the scaffolds. Our results address a critical gap in current research, highlighting the absence of a standardized protocol for optimizing the outcome of photodynamic therapy. The findings underscore the importance of personalized treatment strategies in achieving optimal therapeutic efficacy for precision cancer therapy.
Collapse
Affiliation(s)
- Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185, Rome, Italy
| | - Andrea Papait
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
- Dipartimento di Scienze della Vita e Salute Pubblica, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Alberto Augello
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
| | - Daniela Fioretti
- Istituto di Farmacologia Traslazionale (IFT), Dipartimento di Scienze Biomediche, CNR, 00133, Rome, Italy
| | - Sandra Iurescia
- Istituto di Farmacologia Traslazionale (IFT), Dipartimento di Scienze Biomediche, CNR, 00133, Rome, Italy
| | - Monica Rinaldi
- Istituto di Farmacologia Traslazionale (IFT), Dipartimento di Scienze Biomediche, CNR, 00133, Rome, Italy
| | - Elsa Vertua
- Centro di Ricerca Eugenia Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124, Brescia, Italy
| | - Antonietta Silini
- Centro di Ricerca Eugenia Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124, Brescia, Italy
| | - Riccardo Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Angela Carlino
- Dipartimento di Medicina e Chirurgia, Università Internazionale San Camillo per la Salute e le Scienze Mediche (Unicamillus), 00131, Rome, Italy
| | - Teresa Musarra
- Unità di Patologia Testa e Collo, Polmone e Endocrinologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ornella Parolini
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
- Dipartimento di Scienze della Vita e Salute Pubblica, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
| |
Collapse
|
2
|
Liu R, Gu J, Ye Y, Zhang Y, Zhang S, Lin Q, Yuan S, Chen Y, Lu X, Tong Y, Lv S, Chen L, Sun G. A Natural Compound Containing a Disaccharide Structure of Glucose and Rhamnose Identified as Potential N-Glycanase 1 (NGLY1) Inhibitors. Molecules 2023; 28:7758. [PMID: 38067490 PMCID: PMC10707914 DOI: 10.3390/molecules28237758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
N-glycanase 1 (NGLY1) is an essential enzyme involved in the deglycosylation of misfolded glycoproteins through the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway, which could hydrolyze N-glycan from N-glycoprotein or N-glycopeptide in the cytosol. Recent studies indicated that NGLY1 inhibition is a potential novel drug target for antiviral therapy. In this study, structure-based virtual analysis was applied to screen candidate NGLY1 inhibitors from 2960 natural compounds. Three natural compounds, Poliumoside, Soyasaponin Bb, and Saikosaponin B2 showed significantly inhibitory activity of NGLY1, isolated from traditional heat-clearing and detoxifying Chinese herbs. Furthermore, the core structural motif of the three NGLY1 inhibitors was a disaccharide structure with glucose and rhamnose, which might exert its action by binding to important active sites of NGLY1, such as Lys238 and Trp244. In traditional Chinese medicine, many compounds containing this disaccharide structure probably targeted NGLY1. This study unveiled the leading compound of NGLY1 inhibitors with its core structure, which could guide future drug development.
Collapse
Affiliation(s)
- Ruijie Liu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.L.); (Y.Y.); (Y.Z.); (S.Z.); (Q.L.)
| | - Jingjing Gu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Yilin Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.L.); (Y.Y.); (Y.Z.); (S.Z.); (Q.L.)
| | - Yuxin Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.L.); (Y.Y.); (Y.Z.); (S.Z.); (Q.L.)
| | - Shaoxing Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.L.); (Y.Y.); (Y.Z.); (S.Z.); (Q.L.)
| | - Qiange Lin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.L.); (Y.Y.); (Y.Z.); (S.Z.); (Q.L.)
| | - Shuying Yuan
- Department of Clinical Laboratory, Jiaxing Maternity and Child Health Care Hospital, Jiaxing 314001, China;
| | - Yanwen Chen
- Central Laboratory, Ningbo Hospital, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Ningbo 315336, China;
| | - Xinrong Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.L.); (Y.T.); (S.L.)
| | - Yongliang Tong
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.L.); (Y.T.); (S.L.)
| | - Shaoxian Lv
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.L.); (Y.T.); (S.L.)
| | - Li Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.L.); (Y.T.); (S.L.)
| | - Guiqin Sun
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.L.); (Y.Y.); (Y.Z.); (S.Z.); (Q.L.)
| |
Collapse
|
3
|
Cui J, Qiu M, Liu Y, Liu Y, Tang Y, Teng X, Li S. Nano-selenium protects grass carp hepatocytes against 4-tert-butylphenol-induced mitochondrial apoptosis and necroptosis via suppressing ROS-PARP1 axis. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108682. [PMID: 36924910 DOI: 10.1016/j.fsi.2023.108682] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/19/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
4-tert-butylphenol (4-tBP) is a monomer widely used in the synthesis of industrial chemicals, and posed a high risk to aquatic animals. Our study focused on toxic phenotype and mechanism of detoxification in grass carp hepatocytes (L8824) after 4-tBP-treatment. In this experiment, L8824 displayed hallmark phenotypes of apoptosis and necroptosis after 4-tBP exposure, as evidenced by changes in cell morphology, increased rates of apoptosis and necrosis, the loss of MMP, the accumulation of ROS, and changes in associated factors (PARP1, JNK, Bid, Bcl-2, Bax, AIFM1, CytC, Caspase 9, APAF1, Caspase 3, TNF-α, TNFR1, RIPK1, RIPK3, and MLKL). Furthermore, we found that 4-tBP-induced apoptosis and necroptosis were reversed by pretreating with N-Acetylcysteine (a ROS scavenger) and 3-Aminobenzamide (a PARP1 inhibitor), indicating that 4-tBP induced the onset of mitochondrial apoptosis and necroptosis in L8824 via activating ROS-PARP1 axis. Nano-selenium (Nano-Se) is a novel form of Se with a noteworthy antioxidant capacity. Here, Nano-Se was found to have preventive, therapeutic, and resistance effects on 4-tBP-induced L8824 apoptosis and necroptosis. Nano-Se co-treatment with 4-tBP was an optimal way to alleviate 4-tBP-induced apoptosis and necroptosis. We demonstrated for the first time that Nano-Se protected L8824 against 4-tBP-induced mitochondrial apoptosis and necroptosis through ROS-PARP1 pathway. This study will provide a new theoretical basis for 4-tBP toxicology researches and aquatic animal protection.
Collapse
Affiliation(s)
- Jiawen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Minna Qiu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yuhang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yuhao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - You Tang
- Digital Agriculture Key Discipline of Jilin Province, JiLin Agricultural Science and Technology University, Jilin, 132101, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
4
|
Scarrott JM, Johari YB, Pohle TH, Liu P, Mayer A, James DC. Increased recombinant adeno-associated virus production by HEK293 cells using small molecule chemical additives. Biotechnol J 2023; 18:e2200450. [PMID: 36495042 DOI: 10.1002/biot.202200450] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Recombinant adeno-associated virus (rAAV) has established itself as a highly efficacious gene delivery vector with a well characterised safety profile allowing broad clinical application. Recent successes in rAAV-mediated gene therapy clinical trials will continue to drive demand for improved rAAV production processes to reduce costs. Here, we demonstrate that small molecule bioactive chemical additives can significantly increase recombinant AAV vector production by human embryonic kidney (HEK) cells up to three-fold. Nocodazole (an anti-mitotic agent) and M344 (a selective histone deacetylase inhibitor) were identified as positive regulators of rAAV8 genome titre in a microplate screening assay. Addition of nocodazole to triple-transfected HEK293 suspension cells producing rAAV arrested cells in G2/M phase, increased average cell volume and reduced viable cell density relative to untreated rAAV producing cells at harvest. Final crude genome vector titre from nocodazole treated cultures was >2-fold higher compared to non-treated cultures. Further investigation showed nocodazole addition to cultures to be time critical. Genome titre improvement was found to be scalable and serotype independent across two distinct rAAV serotypes, rAAV8 and rAAV9. Furthermore, a combination of M344 and nocodazole produced a positive additive effect on rAAV8 genome titre, resulting in a three-fold increase in genome titre compared to untreated cells.
Collapse
Affiliation(s)
- Joseph M Scarrott
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Yusuf B Johari
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Thilo H Pohle
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Ping Liu
- Cell Line Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Ayda Mayer
- Cell Line Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Abbott J, Tambe M, Pavlinov I, Farkhondeh A, Nguyen HN, Xu M, Pradhan M, York T, Might M, Baumgärtel K, Rodems S, Zheng W. Generation and characterization of NGLY1 patient-derived midbrain organoids. Front Cell Dev Biol 2023; 11:1039182. [PMID: 36875753 PMCID: PMC9978932 DOI: 10.3389/fcell.2023.1039182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023] Open
Abstract
NGLY1 deficiency is an ultra-rare, autosomal recessive genetic disease caused by mutations in the NGLY1 gene encoding N-glycanase one that removes N-linked glycan. Patients with pathogenic mutations in NGLY1 have complex clinical symptoms including global developmental delay, motor disorder and liver dysfunction. To better understand the disease pathogenesis and the neurological symptoms of the NGLY1 deficiency we generated and characterized midbrain organoids using patient-derived iPSCs from two patients with distinct disease-causing mutations-one homozygous for p. Q208X, the other compound heterozygous for p. L318P and p. R390P and CRISPR generated NGLY1 knockout iPSCs. We demonstrate that NGLY1 deficient midbrain organoids show altered neuronal development compared to one wild type (WT) organoid. Both neuronal (TUJ1) and astrocytic glial fibrillary acid protein markers were reduced in NGLY1 patient-derived midbrain organoids along with neurotransmitter GABA. Interestingly, staining for dopaminergic neuronal marker, tyrosine hydroxylase, revealed a significant reduction in patient iPSC derived organoids. These results provide a relevant NGLY1 disease model to investigate disease mechanisms and evaluate therapeutics for treatments of NGLY1 deficiency.
Collapse
Affiliation(s)
- Joshua Abbott
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Mitali Tambe
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Ivan Pavlinov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Atena Farkhondeh
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Ha Nam Nguyen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,3Dnamics, Inc., Baltimore, MD, United States
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Manisha Pradhan
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Tate York
- NeuroScience Associates Inc, Knoxville, TN, United States
| | - Matthew Might
- University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Walber S, Partalidou G, Gerling‐Driessen UIM. NGLY1 Deficiency: A Rare Genetic Disorder Unlocks Therapeutic Potential for Common Diseases. Isr J Chem 2022. [DOI: 10.1002/ijch.202200068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Simon Walber
- Institute of Organic and Macromolecular Chemistry Heinrich Heine University Duesseldorf Universitaetsstrasse 1 40225 Duesseldorf Germany
| | - Georgia Partalidou
- Institute of Organic and Macromolecular Chemistry Heinrich Heine University Duesseldorf Universitaetsstrasse 1 40225 Duesseldorf Germany
| | - Ulla I. M. Gerling‐Driessen
- Institute of Organic and Macromolecular Chemistry Heinrich Heine University Duesseldorf Universitaetsstrasse 1 40225 Duesseldorf Germany
| |
Collapse
|
7
|
To Die or Not to Die—Regulated Cell Death and Survival in Cyanobacteria. Microorganisms 2022; 10:microorganisms10081657. [PMID: 36014075 PMCID: PMC9415839 DOI: 10.3390/microorganisms10081657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Regulated cell death (RCD) is central to the development, integrity, and functionality of multicellular organisms. In the last decade, evidence has accumulated that RCD is a universal phenomenon in all life domains. Cyanobacteria are of specific interest due to their importance in aquatic and terrestrial habitats and their role as primary producers in global nutrient cycling. Current knowledge on cyanobacterial RCD is based mainly on biochemical and morphological observations, often by methods directly transferred from vertebrate research and with limited understanding of the molecular genetic basis. However, the metabolism of different cyanobacteria groups relies on photosynthesis and nitrogen fixation, whereas mitochondria are the central executioner of cell death in vertebrates. Moreover, cyanobacteria chosen as biological models in RCD studies are mainly colonial or filamentous multicellular organisms. On the other hand, unicellular cyanobacteria have regulated programs of cellular survival (RCS) such as chlorosis and post-chlorosis resuscitation. The co-existence of different genetically regulated programs in cyanobacterial populations may have been a top engine in life diversification. Development of cyanobacteria-specific methods for identification and characterization of RCD and wider use of single-cell analysis combined with intelligent image-based cell sorting and metagenomics would shed more light on the underlying molecular mechanisms and help us to address the complex colonial interactions during these events. In this review, we focus on the functional implications of RCD in cyanobacterial communities.
Collapse
|
8
|
Li MZ, Liu EJ, Zhou QZ, Li SH, Liu SJ, Yu HT, Pan QH, Sun F, He T, Wang WJ, Ke D, Feng YQ, Li J, Wang JZ. Intracellular accumulation of tau inhibits autophagosome formation by activating TIA1-amino acid-mTORC1 signaling. Mil Med Res 2022; 9:38. [PMID: 35799293 PMCID: PMC9264508 DOI: 10.1186/s40779-022-00396-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autophagy dysfunction plays a crucial role in tau accumulation and neurodegeneration in Alzheimer's disease (AD). This study aimed to investigate whether and how the accumulating tau may in turn affect autophagy. METHODS The primary hippocampal neurons, N2a and HEK293T cells with tau overexpression were respectively starved and treated with vinblastine to study the effects of tau on the initiating steps of autophagy, which was analysed by Student's two-tailed t-test. The rapamycin and concanamycin A were employed to inhibit the mammalian target of rapamycin kinase complex 1 (mTORC1) activity and the vacuolar H+-ATPase (v-ATPase) activity, respectively, which were analysed by One-way ANOVA with post hoc tests. The Western blotting, co-immunoprecipitation and immunofluorescence staining were conducted to gain insight into the mechanisms underlying the tau effects of mTORC1 signaling alterations, as analysed by Student's two-tailed t-test or One-way ANOVA with post hoc tests. The autophagosome formation was detected by immunofluorescence staining and transmission electron microscopy. The amino acids (AA) levels were detected by high performance liquid chromatography (HPLC). RESULTS We observed that overexpressing human full-length wild-type tau to mimic AD-like tau accumulation induced autophagy deficits. Further studies revealed that the increased tau could bind to the prion-related domain of T cell intracellular antigen 1 (PRD-TIA1) and this association significantly increased the intercellular level of amino acids (Leucine, P = 0.0038; Glutamic acid, P = 0.0348; Alanine, P = 0.0037; Glycine, P = 0.0104), with concordant upregulation of mTORC1 activity [phosphorylated eukaryotic translation initiation factor 4E-binding protein 1 (p-4EBP1), P < 0.0001; phosphorylated 70 kDa ribosomal protein S6 kinase 1 (p-p70S6K1), P = 0.0001, phosphorylated unc-51-like autophagy-activating kinase 1 (p-ULK1), P = 0.0015] and inhibition of autophagosome formation [microtubule-associated protein light chain 3 II (LC3 II), P = 0.0073; LC3 puncta, P < 0.0001]. As expected, this tau-induced deficit of autophagosome formation in turn aggravated tau accumulation. Importantly, we also found that blocking TIA1 and tau interaction by overexpressing PRD-TIA1, downregulating the endogenous TIA1 expression by shRNA, or downregulating tau protein level by a small proteolysis targeting chimera (PROTAC) could remarkably attenuate tau-induced autophagy impairment. CONCLUSIONS Our findings reveal that AD-like tau accumulation inhibits autophagosome formation and induces autophagy deficits by activating the TIA1/amino acid/mTORC1 pathway, and thus this work reveals new insight into tau-associated neurodegeneration and provides evidence supporting the use of new therapeutic targets for AD treatment and that of related tauopathies.
Collapse
Affiliation(s)
- Meng-Zhu Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Neurosurgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - En-Jie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qiu-Zhi Zhou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shi-Hong Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shi-Jie Liu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Hai-Tao Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi-Hang Pan
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Neurosurgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Fei Sun
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting He
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei-Jin Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Jun Li
- Department of Neurosurgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, Jiangsu, China.
| |
Collapse
|
9
|
Sakthivel D, Bolívar BE, Bouchier‐Hayes L. Cellular autophagy, an unbidden effect of caspase inhibition by zVAD‐fmk. FEBS J 2022; 289:3097-3100. [DOI: 10.1111/febs.16346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Dharaniya Sakthivel
- Department of Molecular and Human Genetics Baylor College of Medicine Houston TX USA
- Division of Hematology‐Oncology, Department of Pediatrics Baylor College of Medicine Houston TX USA
- Texas Children’s Hospital Houston William T. Shearer Center for Human Immunobiology TX USA
| | - Beatriz E. Bolívar
- Division of Hematology‐Oncology, Department of Pediatrics Baylor College of Medicine Houston TX USA
- Texas Children’s Hospital Houston William T. Shearer Center for Human Immunobiology TX USA
| | - Lisa Bouchier‐Hayes
- Division of Hematology‐Oncology, Department of Pediatrics Baylor College of Medicine Houston TX USA
- Texas Children’s Hospital Houston William T. Shearer Center for Human Immunobiology TX USA
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX USA
| |
Collapse
|
10
|
Li YJ, Hu PP, Zhang Z, Yuan ZH, Yang K, Sun ZL. Protective autophagy alleviates neurotoxin-gelsenicine induced apoptosis through PERK signaling pathway in Neuro-2a cells. Toxicology 2022; 474:153210. [PMID: 35588915 DOI: 10.1016/j.tox.2022.153210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
Gelsemium elegans Benth. (G. elegans) showed significant biological activities, but it has the side effects of neurotoxicity, predominantly in the form of respiratory depression. Gelsenicine is the main toxic constituent of G. elegans which is highly neurotoxic to humans and animals. Although the acute neurotoxicity of gelsenicine has been widely reported, but neurotoxicity mechanisms have not been elucidated and its direct effect on nerve cells remains poorly characterized. In this study, Neuro-2a cells were used to be our object of study for determining the mechanism by which gelsenicine induced neurotoxicity. We found that gelsenicine is neurotoxic to Neuro-2a cells; indeed cell proliferation was inhibited and apoptosis was induced in a dose-dependent manner. Meanwhile, gelsenicine markedly promoted autophagy and activated autophagic flux. Additionally, promoting autophagy with rapamycin decreased apoptosis, whereas blocking autophagy with 3-methyladenine (3-MA) increased apoptosis. Furthermore, the protein kinase ribose nucleic acid (RNA)-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2 alpha (eIF2α)/activating transcription factor 4 (ATF4) signaling pathway was involved in the induction of protective autophagy in Neuro-2a cells. Inhibition of PERK using small interfering RNA (siRNA) inhibited gelsenicine-induced autophagy and aggravated apoptosis. These data indicate that gelsenicine not only exhibited cytotoxicity and induced apoptosis, but it also induced protective autophagy via PERK signaling pathway to alleviate gelsenicine-mediated apoptosis in Neuro-2a cells.
Collapse
Affiliation(s)
- Yu-Juan Li
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan 410128, China; Department of Basic Medicine, Xiangnan University, Chenzhou, Hunan 423000, China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Pei-Pei Hu
- College of Animal Medicine, Henan University of Animal Husbandry and Economics, Zhengzhou, Henan 400045, China
| | - Zhiqiang Zhang
- College of Animal Medicine, Henan University of Animal Husbandry and Economics, Zhengzhou, Henan 400045, China
| | - Zhi-Hang Yuan
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan 410128, China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Kun Yang
- College of Animal Medicine, Henan University of Animal Husbandry and Economics, Zhengzhou, Henan 400045, China.
| | - Zhi-Liang Sun
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan 410128, China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
11
|
NGLY1 Deficiency, a Congenital Disorder of Deglycosylation: From Disease Gene Function to Pathophysiology. Cells 2022; 11:cells11071155. [PMID: 35406718 PMCID: PMC8997433 DOI: 10.3390/cells11071155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
N-Glycanase 1 (NGLY1) is a cytosolic enzyme involved in removing N-linked glycans of misfolded N-glycoproteins and is considered to be a component of endoplasmic reticulum-associated degradation (ERAD). The 2012 identification of recessive NGLY1 mutations in a rare multisystem disorder has led to intense research efforts on the roles of NGLY1 in animal development and physiology, as well as the pathophysiology of NGLY1 deficiency. Here, we present a review of the NGLY1-deficient patient phenotypes, along with insights into the function of this gene from studies in rodent and invertebrate animal models, as well as cell culture and biochemical experiments. We will discuss critical processes affected by the loss of NGLY1, including proteasome bounce-back response, mitochondrial function and homeostasis, and bone morphogenetic protein (BMP) signaling. We will also cover the biologically relevant targets of NGLY1 and the genetic modifiers of NGLY1 deficiency phenotypes in animal models. Together, these discoveries and disease models have provided a number of avenues for preclinical testing of potential therapeutic approaches for this disease.
Collapse
|