1
|
Pitasse-Santos P, Hewitt-Richards I, Abeywickrama Wijewardana Sooriyaarachchi MD, Doveston RG. Harnessing the 14-3-3 protein-protein interaction network. Curr Opin Struct Biol 2024; 86:102822. [PMID: 38685162 DOI: 10.1016/j.sbi.2024.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Protein-protein interactions (PPIs) play a critical role in cellular signaling and represent interesting targets for therapeutic intervention. 14-3-3 proteins integrate many signaling targets via PPIs and are frequently implicated in disease, making them intriguing drug targets. Here, we review the recent advances in the 14-3-3 field. It will discuss the roles 14-3-3 proteins play within the cell, elucidation of their expansive interactome, and the complex mechanisms that underpin their function. In addition, the review will discuss significant advances in the development of molecular glues that target 14-3-3 PPIs. In particular, it will focus on novel drug discovery and development methodologies that have delivered selective, potent, and drug-like molecules that could open new avenues for the development of precision molecular tools and medicines.
Collapse
Affiliation(s)
- Paulo Pitasse-Santos
- Leicester Institute of Structural and Chemical Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK; School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Isaac Hewitt-Richards
- School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | | - Richard G Doveston
- Leicester Institute of Structural and Chemical Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK; School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
2
|
Ward JA, Romartinez-Alonso B, Kay DF, Bellamy-Carter J, Thurairajah B, Basran J, Kwon H, Leney AC, Macip S, Roversi P, Muskett FW, Doveston RG. Characterizing the protein-protein interaction between MDM2 and 14-3-3σ; proof of concept for small molecule stabilization. J Biol Chem 2024; 300:105651. [PMID: 38237679 PMCID: PMC10864208 DOI: 10.1016/j.jbc.2024.105651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/01/2023] [Accepted: 01/01/2024] [Indexed: 02/10/2024] Open
Abstract
Mouse Double Minute 2 (MDM2) is a key negative regulator of the tumor suppressor protein p53. MDM2 overexpression occurs in many types of cancer and results in the suppression of WT p53. The 14-3-3 family of adaptor proteins are known to bind MDM2 and the 14-3-3σ isoform controls MDM2 cellular localization and stability to inhibit its activity. Therefore, small molecule stabilization of the 14-3-3σ/MDM2 protein-protein interaction (PPI) is a potential therapeutic strategy for the treatment of cancer. Here, we provide a detailed biophysical and structural characterization of the phosphorylation-dependent interaction between 14-3-3σ and peptides that mimic the 14-3-3 binding motifs within MDM2. The data show that di-phosphorylation of MDM2 at S166 and S186 is essential for high affinity 14-3-3 binding and that the binary complex formed involves one MDM2 di-phosphorylated peptide bound to a dimer of 14-3-3σ. However, the two phosphorylation sites do not simultaneously interact so as to bridge the 14-3-3 dimer in a 'multivalent' fashion. Instead, the two phosphorylated MDM2 motifs 'rock' between the two binding grooves of the dimer, which is unusual in the context of 14-3-3 proteins. In addition, we show that the 14-3-3σ-MDM2 interaction is amenable to small molecule stabilization. The natural product fusicoccin A forms a ternary complex with a 14-3-3σ dimer and an MDM2 di-phosphorylated peptide resulting in the stabilization of the 14-3-3σ/MDM2 PPI. This work serves as a proof-of-concept of the drugability of the 14-3-3/MDM2 PPI and paves the way toward the development of more selective and efficacious small molecule stabilizers.
Collapse
Affiliation(s)
- Jake A Ward
- Leicester Institute for Structural and Chemical Biology, University of Leicester, Leicester, UK; Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Beatriz Romartinez-Alonso
- Leicester Institute for Structural and Chemical Biology, University of Leicester, Leicester, UK; Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Danielle F Kay
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | - Bethany Thurairajah
- Leicester Institute for Structural and Chemical Biology, University of Leicester, Leicester, UK; School of Chemistry, University of Leicester, Leicester, UK
| | - Jaswir Basran
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Hanna Kwon
- Leicester Institute for Structural and Chemical Biology, University of Leicester, Leicester, UK; Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Aneika C Leney
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Salvador Macip
- Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK; FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain; Josep Carreras Leukaemia Research Institute, Ctra de Can Ruti, Camí de les Escoles, s/n, Badalona, Barcelona, Spain
| | - Pietro Roversi
- Leicester Institute for Structural and Chemical Biology, University of Leicester, Leicester, UK; Institute of Agricultural Biology and Biotechnology, C.N.R., Unit of Milan, Milano, Italy
| | - Frederick W Muskett
- Leicester Institute for Structural and Chemical Biology, University of Leicester, Leicester, UK; Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Richard G Doveston
- Leicester Institute for Structural and Chemical Biology, University of Leicester, Leicester, UK; School of Chemistry, University of Leicester, Leicester, UK.
| |
Collapse
|
3
|
Thurairajah B, Hudson AJ, Doveston RG. Contemporary biophysical approaches for studying 14-3-3 protein-protein interactions. Front Mol Biosci 2022; 9:1043673. [PMID: 36425654 PMCID: PMC9679655 DOI: 10.3389/fmolb.2022.1043673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 06/28/2024] Open
Abstract
14-3-3 proteins are a family of regulatory hubs that function through a vast network of protein-protein interactions. Their dysfunction or dysregulation is implicated in a wide range of diseases, and thus they are attractive drug targets, especially for molecular glues that promote protein-protein interactions for therapeutic intervention. However, an incomplete understanding of the molecular mechanisms that underpin 14-3-3 function hampers progress in drug design and development. Biophysical methodologies are an essential element of the 14-3-3 analytical toolbox, but in many cases have not been fully exploited. Here, we present a contemporary review of the predominant biophysical techniques used to study 14-3-3 protein-protein interactions, with a focus on examples that address key questions and challenges in the 14-3-3 field.
Collapse
Affiliation(s)
| | | | - Richard G. Doveston
- Leicester Institute for Structural and Chemical Biology and School of Chemistry, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
4
|
Srdanović S, Hegedüs Z, Warriner SL, Wilson AJ. Towards Identification of Protein-Protein Interaction Stabilizers via Inhibitory Peptide-Fragment Hybrids Using Templated Fragment Ligation. RSC Chem Biol 2022; 3:546-550. [PMID: 35656480 PMCID: PMC9092428 DOI: 10.1039/d2cb00025c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022] Open
Abstract
Using the hDMX/14-3-3 interaction, acylhydrazone-based ligand-directed fragment ligation was used to identify protein-protein interaction (PPI) inhibitory peptide-fragment hybrids. Separation of the peptide-fragment hybrids into the components yielded fragments that stabilized...
Collapse
Affiliation(s)
- Sonja Srdanović
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
| | - Zsofia Hegedüs
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- Department of Medical Chemistry, University of Szeged Dóm tér 8 H-6720 Szeged Hungary
| | - Stuart L Warriner
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
| |
Collapse
|