1
|
Chew A, West M, Berger L, Brannelly LA. The impacts of water quality on the amphibian chytrid fungal pathogen: A systematic review. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13274. [PMID: 38775382 PMCID: PMC11110485 DOI: 10.1111/1758-2229.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/06/2024] [Indexed: 05/25/2024]
Abstract
The pathogenic fungus Batrachochytrium dendrobatidis has caused declines of amphibians worldwide. Yet our understanding of how water quality influences fungal pathogenicity is limited. Here, we reviewed experimental studies on the effect of water quality on this pathogen to determine which parameters impacted disease dynamics consistently. The strongest evidence for protective effects is salinity which shows strong antifungal properties in hosts at natural levels. Although many fungicides had detrimental effects on the fungal pathogen in vitro, their impact on the host is variable and they can worsen infection outcomes. However, one fungicide, epoxiconazole, reduced disease effects experimentally and likely in the field. While heavy metals are frequently studied, there is weak evidence that they influence infection outcomes. Nitrogen and phosphorous do not appear to impact pathogen growth or infection in the amphibian host. The effects of other chemicals, like pesticides and disinfectants on infection were mostly unclear with mixed results or lacking an in vivo component. Our study shows that water chemistry does impact disease dynamics, but the effects of specific parameters require more investigation. Improving our understanding of how water chemistry influences disease dynamics will help predict the impact of chytridiomycosis, especially in amphibian populations affected by land use changes.
Collapse
Affiliation(s)
- Adeline Chew
- School of BiosciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Matt West
- School of BiosciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Lee Berger
- Melbourne Veterinary SchoolThe University of MelbourneWerribeeVictoriaAustralia
| | - Laura A. Brannelly
- Melbourne Veterinary SchoolThe University of MelbourneWerribeeVictoriaAustralia
| |
Collapse
|
2
|
Paetow LJ, Cue RI, Pauli BD, Marcogliese DJ. Effects of Herbicides and the Chytrid Fungus Batrachochytrium dendrobatidis on the growth, development and survival of Larval American Toads (Anaxyrus americanus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115021. [PMID: 37216860 DOI: 10.1016/j.ecoenv.2023.115021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
Pesticides and pathogens adversely affect amphibian health, but their interactive effects are not well known. We assessed independent and combined effects of two agricultural herbicides and the fungal pathogen Batrachochytrium dendrobatidis (Bd) on the growth, development and survival of larval American toads (Anaxyrus americanus). Wild-caught tadpoles were exposed to four concentrations of atrazine (0.18, 1.8, 18.0, 180 μg/L) or glyphosate (7, 70, 700, 7000 µg a.e./L), respectively contained in Aatrex® Liquid 480 (Syngenta) or Vision® Silviculture Herbicide (Monsanto) for 14 days, followed by two doses of Bd. At day 14, atrazine had not affected survival, but it non-monotonically affected growth. Exposure to the highest concentration of glyphosate caused 100% mortality within 4 days, while lower doses had an increasing monotonic effect on growth. At day 65, tadpole survival was unaffected by atrazine and the lower doses of glyphosate. Neither herbicide demonstrated an interaction effect with Bd on survival, but exposure to Bd increased survival among both herbicide-exposed and herbicide-control tadpoles. At day 60, tadpoles exposed to the highest concentration of atrazine remained smaller than controls, indicating longer-term effects of atrazine on growth, but effects of glyphosate on growth disappeared. Growth was unaffected by any herbicide-fungal interaction but was positively affected by exposure to Bd following exposure to atrazine. Atrazine exhibited a slowing and non-monotonic effect on Gosner developmental stage, while exposure to Bd tended to speed up development and act antagonistically toward the observed effect of atrazine. Overall, atrazine, glyphosate and Bd all showed a potential to modulate larval toad growth and development.
Collapse
Affiliation(s)
- Linda J Paetow
- Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, Quebec H4B 1R6, Canada.
| | - Roger I Cue
- Department of Animal Science, McGill University, 21111 Lakeshore Rd., Ste. Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Bruce D Pauli
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1A 0H3, Canada
| | - David J Marcogliese
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Science and Technology Branch, St. Lawrence Centre, Environment and Climate Change Canada, 105 McGill, 7th Floor, Montreal, Quebec H2Y 2E7, Canada
| |
Collapse
|
3
|
Delayed Effects of Nutrients in the Larval Environment on Cope's Gray Treefrogs (Hyla chrysoscelis) Exposed to Batrachochytrium dendrobatidis. J HERPETOL 2022. [DOI: 10.1670/21-058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Harjoe CC, Buck JC, Rohr JR, Roberts CE, Olson DH, Blaustein AR. Pathogenic fungus causes density‐ and trait‐mediated trophic cascades in an aquatic community. Ecosphere 2022. [DOI: 10.1002/ecs2.4043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Carmen C. Harjoe
- Department of Integrative Biology Oregon State University Corvallis Oregon USA
| | - Julia C. Buck
- Department of Biology and Marine Biology University of North Carolina Wilmington Wilmington North Carolina USA
| | - Jason R. Rohr
- Department of Biological Sciences University of Notre Dame, Eck Institute for Global Health, and Environmental Change Initiative Notre Dame Indiana USA
| | - Claire E. Roberts
- Department of Integrative Biology Oregon State University Corvallis Oregon USA
| | - Deanna H. Olson
- Pacific Northwest Research Station USDA Forest Service Corvallis Oregon USA
| | - Andrew R. Blaustein
- Department of Integrative Biology Oregon State University Corvallis Oregon USA
| |
Collapse
|
5
|
Rettig JE, Teeters NR, Smith GR. Effects of the Interaction of Bluegill and Two Species of Tadpoles on Experimental Zooplankton Communities. AMERICAN MIDLAND NATURALIST 2021. [DOI: 10.1674/0003-0031-186.1.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Farthing HN, Jiang J, Henwood AJ, Fenton A, Garner TWJ, Daversa DR, Fisher MC, Montagnes DJS. Microbial Grazers May Aid in Controlling Infections Caused by the Aquatic Zoosporic Fungus Batrachochytrium dendrobatidis. Front Microbiol 2021; 11:592286. [PMID: 33552011 PMCID: PMC7858660 DOI: 10.3389/fmicb.2020.592286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Free-living eukaryotic microbes may reduce animal diseases. We evaluated the dynamics by which micrograzers (primarily protozoa) apply top-down control on the chytrid Batrachochytrium dendrobatidis (Bd) a devastating, panzootic pathogen of amphibians. Although micrograzers consumed zoospores (∼3 μm), the dispersal stage of chytrids, not all species grew monoxenically on zoospores. However, the ubiquitous ciliate Tetrahymena pyriformis, which likely co-occurs with Bd, grew at near its maximum rate (r = 1.7 d-1). A functional response (ingestion vs. prey abundance) for T. pyriformis, measured using spore-surrogates (microspheres) revealed maximum ingestion (I max ) of 1.63 × 103 zoospores d-1, with a half saturation constant (k) of 5.75 × 103 zoospores ml-1. Using these growth and grazing data we developed and assessed a population model that incorporated chytrid-host and micrograzer dynamics. Simulations using our data and realistic parameters obtained from the literature suggested that micrograzers could control Bd and potentially prevent chytridiomycosis (defined as 104 sporangia host-1). However, simulated inferior micrograzers (0.7 × I max and 1.5 × k) did not prevent chytridiomycosis, although they ultimately reduced pathogen abundance to below levels resulting in disease. These findings indicate how micrograzer responses can be applied when modeling disease dynamics for Bd and other zoosporic fungi.
Collapse
Affiliation(s)
- Hazel N. Farthing
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Department of Evolution, Ecology and Behaviour, Biosciences Building, University of Liverpool, Liverpool, United Kingdom
| | - Jiamei Jiang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Alexandra J. Henwood
- Department of Evolution, Ecology and Behaviour, Biosciences Building, University of Liverpool, Liverpool, United Kingdom
| | - Andy Fenton
- Department of Evolution, Ecology and Behaviour, Biosciences Building, University of Liverpool, Liverpool, United Kingdom
| | - Trent W. J. Garner
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - David R. Daversa
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Matthew C. Fisher
- Department of Evolution, Ecology and Behaviour, Biosciences Building, University of Liverpool, Liverpool, United Kingdom
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - David J. S. Montagnes
- Department of Evolution, Ecology and Behaviour, Biosciences Building, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
7
|
Preuss JF, Greenspan SE, Rossi EM, Lucas Gonsales EM, Neely WJ, Valiati VH, Woodhams DC, Becker CG, Tozetti AM. Widespread Pig Farming Practice Linked to Shifts in Skin Microbiomes and Disease in Pond-Breeding Amphibians. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11301-11312. [PMID: 32845628 DOI: 10.1021/acs.est.0c03219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Farming practices may reshape the structure of watersheds, water quality, and the health of aquatic organisms. Nutrient enrichment from agricultural pollution increases disease pressure in many host-pathogen systems, but the mechanisms underlying this pattern are not always resolved. For example, nutrient enrichment should strongly influence pools of aquatic environmental bacteria, which has the potential to alter microbiome composition of aquatic animals and their vulnerability to disease. However, shifts in the host microbiome have received little attention as a link between nutrient enrichment and diseases of aquatic organisms. We examined nutrient enrichment through the widespread practice of integrated pig-fish farming and its effects on microbiome composition of Brazilian amphibians and prevalence of the globally distributed amphibian skin pathogen Batrachochytrium dendrobatidis (Bd). This farming system drove surges in fecal coliform bacteria, disturbing amphibian skin bacterial communities such that hosts recruited higher proportions of Bd-facilitative bacteria and carried higher Bd prevalence. Our results highlight previously overlooked connections between global trends in land use change, microbiome dysbiosis, and wildlife disease. These interactions may be particularly important for disease management in the tropics, a region with both high biodiversity and continually intensifying anthropogenic pressures on aquatic wildlife habitats.
Collapse
Affiliation(s)
- Jackson F Preuss
- Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS 93022-750, Brazil
- Departamento de Ciências da Vida, Universidade do Oeste de Santa Catarina, São Miguel do Oeste, SC 89900-000, Brazil
| | - Sasha E Greenspan
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Eliandra M Rossi
- Departamento de Ciências da Vida, Universidade do Oeste de Santa Catarina, São Miguel do Oeste, SC 89900-000, Brazil
| | - Elaine M Lucas Gonsales
- Departamento de Zootecnia e Ciências Biológicas, Universidade Federal de Santa Maria, RS 98300-000, Brazil
| | - Wesley J Neely
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Victor Hugo Valiati
- Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS 93022-750, Brazil
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - C Guilherme Becker
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Alexandro M Tozetti
- Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS 93022-750, Brazil
| |
Collapse
|
8
|
Searle CL, Hochstedler BR, Merrick AM, Ilmain JK, Wigren MA. High resources and infectious disease facilitate invasion by a freshwater crustacean. Oecologia 2018; 188:571-581. [PMID: 30088085 DOI: 10.1007/s00442-018-4237-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/27/2018] [Indexed: 01/23/2023]
Abstract
It is well-established that both resources and infectious disease can influence species invasions, but little is known regarding interactive effects of these two factors. We performed a series of experiments to understand how resources and parasites can jointly affect the ability of a freshwater invasive zooplankton to establish in a population of a native zooplankton. In a life history trial, we found that both species increased offspring production to the same degree as algal resources increased, suggesting that changes in resources would have similar effects on both species. In a microcosm experiment simulating an invasion, we found that the invasive species reached its highest densities when there was a combination of both high resources and the presence of a shared parasite, but not for each of these conditions alone (i.e., a significant resource x parasite interaction). This result can be explained by changes in native host population density; high resource levels initially led to an increase in the density of the native host, which caused larger epidemics when the parasite was present. This high infection prevalence caused a subsequent reduction in native host density, increasing available resources and allowing the invasive species to establish relatively dense populations. Thus, in this system, native communities with a combination of high resource levels and parasitism may be the most vulnerable to invasions. More generally, our results suggest that parasitism and resource availability can have interactive, non-additive effects on the outcome of invasions.
Collapse
Affiliation(s)
- Catherine L Searle
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA.
| | - Baylie R Hochstedler
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Abigail M Merrick
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Juliana K Ilmain
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Maggie A Wigren
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| |
Collapse
|
9
|
Paull SH, Johnson PTJ. How Temperature, Pond-Drying, and Nutrients Influence Parasite Infection and Pathology. ECOHEALTH 2018; 15:396-408. [PMID: 29511903 PMCID: PMC6126996 DOI: 10.1007/s10393-018-1320-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
The rapid pace of environmental change is driving multi-faceted shifts in abiotic factors that influence parasite transmission. However, cumulative effects of these factors on wildlife diseases remain poorly understood. Here we used an information-theoretic approach to compare the relative influence of abiotic factors (temperature, diurnal temperature range, nutrients and pond-drying), on infection of snail and amphibian hosts by two trematode parasites (Ribeiroia ondatrae and Echinostoma spp.). A temperature shift from 20 to 25 °C was associated with an increase in infected snail prevalence of 10-20%, while overall snail densities declined by a factor of 6. Trematode infection abundance in frogs was best predicted by infected snail density, while Ribeiroia infection specifically also declined by half for each 10% reduction in pond perimeter, despite no effect of perimeter on the per snail release rate of cercariae. Both nutrient concentrations and Ribeiroia infection positively predicted amphibian deformities, potentially owing to reduced host tolerance or increased parasite virulence in more productive environments. For both parasites, temperature, pond-drying, and nutrients were influential at different points in the transmission cycle, highlighting the importance of detailed seasonal field studies that capture the importance of multiple drivers of infection dynamics and the mechanisms through which they operate.
Collapse
Affiliation(s)
- Sara H Paull
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, USA.
- Research Applications Laboratory, National Center for Atmospheric Research, Boulder, CO, USA.
- Department of Environmental and Occupational Health, University of Colorado, 13001 E 17th Pl, Box B119, Aurora, CO, 80045, USA.
| | - Pieter T J Johnson
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, USA
| |
Collapse
|
10
|
Becker DJ, Streicker DG, Altizer S, Derryberry E. Using host species traits to understand the consequences of resource provisioning for host-parasite interactions. J Anim Ecol 2018; 87:511-525. [PMID: 29023699 PMCID: PMC5836909 DOI: 10.1111/1365-2656.12765] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/31/2017] [Indexed: 12/17/2022]
Abstract
Supplemental food provided to wildlife by human activities can be more abundant and predictable than natural resources, and subsequent changes in wildlife ecology can have profound impacts on host-parasite interactions. Identifying traits of species associated with increases or decreases in infection outcomes with resource provisioning could improve assessments of wildlife most prone to disease risks in changing environments. We conducted a phylogenetic meta-analysis of 342 host-parasite interactions across 56 wildlife species and three broad taxonomic groups of parasites to identify host-level traits that influence whether provisioning is associated with increases or decreases in infection. We predicted dietary generalists that capitalize on novel food would show greater infection in provisioned habitats owing to population growth and food-borne exposure to contaminants and parasite infectious stages. Similarly, species with fast life histories could experience stronger demographic and immunological benefits from provisioning that affect parasite transmission. We also predicted that wide-ranging and migratory behaviours could increase infection risks with provisioning if concentrated and non-seasonal foods promote dense aggregations that increase exposure to parasites. We found that provisioning increased infection with bacteria, viruses, fungi and protozoa (i.e. microparasites) most for wide-ranging, dietary generalist host species. Effect sizes for ectoparasites were also highest for host species with large home ranges but were instead lowest for dietary generalists. In contrast, the type of provisioning was a stronger correlate of infection outcomes for helminths than host species traits. Our analysis highlights host traits related to movement and feeding behaviour as important determinants of whether species experience greater infection with supplemental feeding. These results could help prioritize monitoring wildlife with particular trait profiles in anthropogenic habitats to reduce infectious disease risks in provisioned populations.
Collapse
Affiliation(s)
- Daniel J. Becker
- Odum School of EcologyUniversity of GeorgiaAthensGAUSA
- Center for the Ecology of Infectious DiseaseUniversity of GeorgiaAthensGAUSA
| | - Daniel G. Streicker
- Odum School of EcologyUniversity of GeorgiaAthensGAUSA
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - Sonia Altizer
- Odum School of EcologyUniversity of GeorgiaAthensGAUSA
- Center for the Ecology of Infectious DiseaseUniversity of GeorgiaAthensGAUSA
| | | |
Collapse
|
11
|
Cuco AP, Santos JI, Abrantes N, Gonçalves F, Wolinska J, Castro BB. Concentration and timing of application reveal strong fungistatic effect of tebuconazole in a Daphnia-microparasitic yeast model. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:144-151. [PMID: 29096087 DOI: 10.1016/j.aquatox.2017.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/06/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
Given the importance of pollutant effects on host-parasite relationships and disease spread, the main goal of this study was to assess the influence of different exposure scenarios for the fungicide tebuconazole (concentration×timing of application) on a Daphnia-microparasitic yeast experimental system. Previous results had demonstrated that tebuconazole is able to suppress Metschnikowia bicuspidata infection at ecologically-relevant concentrations; here, we aimed to obtain an understanding of the mechanism underlying the anti-parasitic (fungicidal or fungistatic) action of tebuconazole. We exposed the Daphnia-yeast system to four nominal tebuconazole concentrations at four timings of application (according to the predicted stage of parasite development), replicated on two Daphnia genotypes, in a fully crossed experiment. An "all-or-nothing" effect was observed, with tebuconazole completely suppressing infection from 13.5μgl-1 upwards, independent of the timing of tebuconazole application. A follow-up experiment confirmed that the suppression of infection occurred within a narrow range of tebuconazole concentrations (3.65-13.5μgl-1), although a later application of the fungicide had to be compensated for by a slight increase in concentration to elicit the same anti-parasitic effect. The mechanism behind this anti-parasitic effect seems to be the inhibition of M. bicuspidata sporulation, since tebuconazole was effective in preventing ascospore production even when applied at a later time. However, this fungicide also seemed to affect the vegetative growth of the yeast, as demonstrated by the enhanced negative effect of the parasite (increasing mortality in one of the host genotypes) at a later time of application of tebuconazole, when no signs of infection were observed. Fungicide contamination can thus affect the severity and spread of disease in natural populations, as well as the inherent co-evolutionary dynamics in host-parasite systems.
Collapse
Affiliation(s)
- Ana P Cuco
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal.
| | - Joana I Santos
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Nelson Abrantes
- CESAM, University of Aveiro, Aveiro, Portugal; Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Fernando Gonçalves
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Bruno B Castro
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|