1
|
Peall KJ, Owen MJ, Hall J. Rare genetic brain disorders with overlapping neurological and psychiatric phenotypes. Nat Rev Neurol 2024; 20:7-21. [PMID: 38001363 DOI: 10.1038/s41582-023-00896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Understanding rare genetic brain disorders with overlapping neurological and psychiatric phenotypes is of increasing importance given the potential for developing disease models that could help to understand more common, polygenic disorders. However, the traditional clinical boundaries between neurology and psychiatry result in frequent segregation of these disorders into distinct silos, limiting cross-specialty understanding that could facilitate clinical and biological advances. In this Review, we highlight multiple genetic brain disorders in which neurological and psychiatric phenotypes are observed, but for which in-depth, cross-spectrum clinical phenotyping is rarely undertaken. We describe the combined phenotypes observed in association with genetic variants linked to epilepsy, dystonia, autism spectrum disorder and schizophrenia. We also consider common underlying mechanisms that centre on synaptic plasticity, including changes to synaptic and neuronal structure, calcium handling and the balance of excitatory and inhibitory neuronal activity. Further investigation is needed to better define and replicate these phenotypes in larger cohorts, which would help to gain greater understanding of the pathophysiological mechanisms and identify common therapeutic targets.
Collapse
Affiliation(s)
- Kathryn J Peall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK.
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| | - Michael J Owen
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
2
|
Stirling DP. Potential physiological and pathological roles for axonal ryanodine receptors. Neural Regen Res 2023; 18:756-759. [PMID: 36204832 PMCID: PMC9700104 DOI: 10.4103/1673-5374.354512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/02/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022] Open
Abstract
Clinical disability following trauma or disease to the spinal cord often involves the loss of vital white matter elements including axons and glia. Although excessive Ca2+ is an established driver of axonal degeneration, therapeutically targeting externally sourced Ca2+ to date has had limited success in both basic and clinical studies. Contributing factors that may underlie this limited success include the complexity of the many potential sources of Ca2+ entry and the discovery that axons also contain substantial amounts of stored Ca2+ that if inappropriately released could contribute to axonal demise. Axonal Ca2+ storage is largely accomplished by the axoplasmic reticulum that is part of a continuous network of the endoplasmic reticulum that provides a major sink and source of intracellular Ca2+ from the tips of dendrites to axonal terminals. This "neuron-within-a-neuron" is positioned to rapidly respond to diverse external and internal stimuli by amplifying cytosolic Ca2+ levels and generating short and long distance regenerative Ca2+ waves through Ca2+ induced Ca2+ release. This review provides a glimpse into the molecular machinery that has been implicated in regulating ryanodine receptor mediated Ca2+ release in axons and how dysregulation and/or overstimulation of these internodal axonal signaling nanocomplexes may directly contribute to Ca2+-dependent axonal demise. Neuronal ryanodine receptors expressed in dendrites, soma, and axonal terminals have been implicated in synaptic transmission and synaptic plasticity, but a physiological role for internodal localized ryanodine receptors remains largely obscure. Plausible physiological roles for internodal ryanodine receptors and such an elaborate internodal binary membrane signaling network in axons will also be discussed.
Collapse
Affiliation(s)
- David P. Stirling
- Kentucky Spinal Cord Injury Research Center and Departments of Neurological Surgery, Anatomical Sciences and Neurobiology, Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY, USA
| |
Collapse
|
3
|
Klocke B, Krone K, Tornes J, Moore C, Ott H, Pitychoutis PM. Insights into the role of intracellular calcium signaling in the neurobiology of neurodevelopmental disorders. Front Neurosci 2023; 17:1093099. [PMID: 36875674 PMCID: PMC9975342 DOI: 10.3389/fnins.2023.1093099] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
Calcium (Ca2+) comprises a critical ionic second messenger in the central nervous system that is under the control of a wide array of regulatory mechanisms, including organellar Ca2+ stores, membrane channels and pumps, and intracellular Ca2+-binding proteins. Not surprisingly, disturbances in Ca2+ homeostasis have been linked to neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. However, aberrations in Ca2+ homeostasis have also been implicated in neuropsychiatric disorders with a strong neurodevelopmental component including autism spectrum disorder (ASD) attention-deficit hyperactivity disorder (ADHD) and schizophrenia (SCZ). While plasma membrane Ca2+ channels and synaptic Ca2+-binding proteins have been extensively studied, increasing evidence suggests a prominent role for intracellular Ca2+ stores, such as the endoplasmic reticulum (ER), in aberrant neurodevelopment. In the context of the current mini-review, we discuss recent findings implicating critical intracellular Ca2+-handling regulators such as the sarco-ER Ca2+ ATPase 2 (SERCA2), ryanodine receptors (RyRs), inositol triphosphate receptors (IP3Rs), and parvalbumin (PVALB), in the emergence of ASD, SCZ, and ADHD.
Collapse
Affiliation(s)
- Benjamin Klocke
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Kylie Krone
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Jason Tornes
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Carter Moore
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Hayden Ott
- Department of Biology, University of Dayton, Dayton, OH, United States
| | | |
Collapse
|
4
|
Keil-Stietz K, Lein PJ. Gene×environment interactions in autism spectrum disorders. Curr Top Dev Biol 2022; 152:221-284. [PMID: 36707213 PMCID: PMC10496028 DOI: 10.1016/bs.ctdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is credible evidence that environmental factors influence individual risk and/or severity of autism spectrum disorders (hereafter referred to as autism). While it is likely that environmental chemicals contribute to the etiology of autism via multiple mechanisms, identifying specific environmental factors that confer risk for autism and understanding how they contribute to the etiology of autism has been challenging, in part because the influence of environmental chemicals likely varies depending on the genetic substrate of the exposed individual. Current research efforts are focused on elucidating the mechanisms by which environmental chemicals interact with autism genetic susceptibilities to adversely impact neurodevelopment. The goal is to not only generate insights regarding the pathophysiology of autism, but also inform the development of screening platforms to identify specific environmental factors and gene×environment (G×E) interactions that modify autism risk. Data from such studies are needed to support development of intervention strategies for mitigating the burden of this neurodevelopmental condition on individuals, their families and society. In this review, we discuss environmental chemicals identified as putative autism risk factors and proposed mechanisms by which G×E interactions influence autism risk and/or severity using polychlorinated biphenyls (PCBs) as an example.
Collapse
Affiliation(s)
- Kimberly Keil-Stietz
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, United States.
| |
Collapse
|
5
|
Sokolov RA, Mukhina IV. Spontaneous Ca 2+ events are linked to the development of neuronal firing during maturation in mice primary hippocampal culture cells. Arch Biochem Biophys 2022; 727:109330. [PMID: 35750097 DOI: 10.1016/j.abb.2022.109330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/21/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022]
Abstract
Calcium is one of the most vital intracellular secondary messengers that tightly regulates a variety of cell physiology processes, especially in the brain. Using a fluorescent Ca2+-sensitive Oregon Green probe, we revealed three different amplitude distributions of spontaneous Ca2+ events (SCEs) in neurons between 15 and 26 days in vitro (DIV) culture maturation. We detected a series of amplitude events: micro amplitude SCE (microSCE) 25% increase from the baseline, intermediate amplitude SCE (interSCE) as 25-75%, and macro amplitude SCE (macroSCE) - over 75%. The SCEs were fully dependent on extracellular Ca2+ and neuronal network activity and vanished in the Ca2+-free solution, 10 mM Mg2+-block, or in the presence of voltage-gated Na+-channel blocker, tetrodotoxin. Combined patch-clamp and Ca2+-imaging techniques revealed that microSCE match single action potential (AP), interSCE - burst of 3-12 APs, and macroSCE - 'superburst' of 10+ APs. MicroSCEs were blocked by a common α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainic acid (KA) receptor antagonist, CNQX. The γ-aminobutyric acid (GABA) A-type receptor (GABAAR) picrotoxin blockade and L-type voltage-dependent Ca2+-channel inhibitor diltiazem significantly reduced microSCE frequency. InterSCEs were inhibited by CNQX, but picrotoxin treatment significantly increased its amplitude. The N-methyl-d-aspartate (NMDA) receptor antagonist, D-APV, voltage-gated K+-channel blocker, tetraethylammonium, noticeably suppressed interSCE amplitude. We also demonstrate that macroSCEs were AMPA/KA receptor-independent.
Collapse
Affiliation(s)
- Rostislav A Sokolov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia; In Vivo Research Center, Sirius University of Science and Technology, Olympic Avenue, 1, Sochi, Russia.
| | - Irina V Mukhina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia; Institute of Fundamental Medicine, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.
| |
Collapse
|
6
|
Keil Stietz KP, Sethi S, Klocke CR, de Ruyter TE, Wilson MD, Pessah IN, Lein PJ. Sex and Genotype Modulate the Dendritic Effects of Developmental Exposure to a Human-Relevant Polychlorinated Biphenyls Mixture in the Juvenile Mouse. Front Neurosci 2021; 15:766802. [PMID: 34924936 PMCID: PMC8678536 DOI: 10.3389/fnins.2021.766802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/04/2021] [Indexed: 11/23/2022] Open
Abstract
While many neurodevelopmental disorders (NDDs) are thought to result from interactions between environmental and genetic risk factors, the identification of specific gene-environment interactions that influence NDD risk remains a critical data gap. We tested the hypothesis that polychlorinated biphenyls (PCBs) interact with human mutations that alter the fidelity of neuronal Ca2+ signaling to confer NDD risk. To test this, we used three transgenic mouse lines that expressed human mutations known to alter Ca2+ signals in neurons: (1) gain-of-function mutation in ryanodine receptor-1 (T4826I-RYR1); (2) CGG-repeat expansion in the 5′ non-coding portion of the fragile X mental retardation gene 1 (FMR1); and (3) a double mutant (DM) that expressed both mutations. Transgenic and wildtype (WT) mice were exposed throughout gestation and lactation to the MARBLES PCB mix at 0.1, 1, or 6 mg/kg in the maternal diet. The MARBLES mix simulates the relative proportions of the twelve most abundant PCB congeners found in serum from pregnant women at increased risk for having a child with an NDD. Using Golgi staining, the effect of developmental PCB exposure on dendritic arborization of pyramidal neurons in the CA1 hippocampus and somatosensory cortex of male and female WT mice was compared to pyramidal neurons from transgenic mice. A multilevel linear mixed-effects model identified a main effect of dose driven by increased dendritic arborization of cortical neurons in the 1 mg/kg PCB dose group. Subsequent analyses with genotypes indicated that the MARBLES PCB mixture had no effect on the dendritic arborization of hippocampal neurons in WT mice of either sex, but significantly increased dendritic arborization of cortical neurons of WT males in the 6 mg/kg PCB dose group. Transgene expression increased sensitivity to the impact of developmental PCB exposure on dendritic arborization in a sex-, and brain region-dependent manner. In conclusion, developmental exposure to PCBs present in the gestational environment of at-risk humans interfered with normal dendritic morphogenesis in the developing mouse brain in a sex-, genotype- and brain region-dependent manner. Overall, these observations provide proof-of-principle evidence that PCBs interact with heritable mutations to modulate a neurodevelopmental outcome of relevance to NDDs.
Collapse
Affiliation(s)
- Kimberly P Keil Stietz
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Carolyn R Klocke
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Tryssa E de Ruyter
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Machelle D Wilson
- Clinical and Translational Science Center, Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
7
|
Sethi S, Keil Stietz KP, Valenzuela AE, Klocke CR, Silverman JL, Puschner B, Pessah IN, Lein PJ. Developmental Exposure to a Human-Relevant Polychlorinated Biphenyl Mixture Causes Behavioral Phenotypes That Vary by Sex and Genotype in Juvenile Mice Expressing Human Mutations That Modulate Neuronal Calcium. Front Neurosci 2021; 15:766826. [PMID: 34938155 PMCID: PMC8685320 DOI: 10.3389/fnins.2021.766826] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/17/2021] [Indexed: 01/13/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are putative environmental risks for neurodevelopmental disorders. Here, we tested two hypotheses: (1) developmental exposure to a human-relevant PCB mixture causes behavioral phenotypes relevant to neurodevelopmental disorders; and (2) expression of human mutations that dysregulate neuronal Ca2+ homeostasis influence sensitivity to behavioral effects of developmental PCB exposures. To test these hypotheses, we used mice that expressed a gain-of-function mutation (T4826I) in ryanodine receptor 1 (RYR1), the X-linked fragile X mental retardation 1 (FMR1) CGG repeat expansion or both mutations (double mutant; DM). Transgenic mice and wildtype (WT) mice were exposed to the MARBLES PCB mix at 0, 0.1, 1, and 6 mg/kg/day in the maternal diet throughout gestation and lactation. The MARBLES PCB mix simulates the relative proportions of the 12 most abundant PCB congeners found in the serum of pregnant women at increased risk for having a child with a neurodevelopmental disorder. We assessed ultrasonic vocalizations at postnatal day 7 (P7), spontaneous repetitive behaviors at P25-P30, and sociability at P27-P32. Developmental PCB exposure reduced ultrasonic vocalizations in WT litters in all dose groups, but had no effect on ultrasonic vocalizations in transgenic litters. Developmental PCB exposure significantly increased self-grooming and decreased sociability in WT males in the 0.1 mg/kg dose group, but had no effect on WT females in any dose group. Genotype alone influenced ultrasonic vocalizations, self-grooming and to a lesser extent sociability. Genotype alone also influenced effects of PCBs on sociability. PCB levels in the brain tissue of pups increased in a dose-dependent manner, but within any dose group did not differ between genotypes. In summary, developmental PCB exposure phenocopied social behavior phenotypes observed in mice expressing human mutations that modify intracellular Ca2+ dynamics, and expression of these mutations alleviated PCB effects on ultrasonic vocalizations and repetitive behavior, and modified the dose-response relationships and sex-dependent effects of PCB effects on social behavior. These findings suggest that: (1) developmental PCB exposure causes behavioral phenotypes that vary by sex and genotype; and (2) sex-specific responses to environmental factors may contribute to sex biases in the prevalence and/or severity of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Kimberly P. Keil Stietz
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Anthony E. Valenzuela
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Carolyn R. Klocke
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Jill L. Silverman
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
- The MIND Institute, University of California, Davis, Davis, CA, United States
| | - Birgit Puschner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Isaac N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- The MIND Institute, University of California, Davis, Davis, CA, United States
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- The MIND Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Keil Stietz KP, Kennedy CL, Sethi S, Valenzuela A, Nunez A, Wang K, Wang Z, Wang P, Spiegelhoff A, Puschner B, Bjorling DE, Lein PJ. In utero and lactational PCB exposure drives anatomic changes in the juvenile mouse bladder. Curr Res Toxicol 2021; 2:1-18. [PMID: 34337439 PMCID: PMC8317607 DOI: 10.1016/j.crtox.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bladder dysfunction, including incontinence, difficulty emptying the bladder, or urgency to urinate is a pervasive health and quality of life concern. However, risk factors for developing these symptoms are not completely understood, and the influence of exposure to environmental chemicals, especially during development, on the formation and function of the bladder is understudied. Environmental contaminants such as polychlorinated biphenyls (PCBs) are known to pose a risk to the developing brain; however, their influence on the development of peripheral target organs, such as bladder, are unknown. To address this data gap, C57Bl/6J mouse dams were exposed to an environmentally-relevant PCB mixture at 0, 0.1, 1 or 6 mg/kg daily beginning two weeks prior to mating and continuing through gestation and lactation. Bladders were collected from offspring at postnatal days (P) 28-31. PCB concentrations were detected in bladders in a dose-dependent manner. PCB effects on the bladder were sex- and dose-dependent. Overall, PCB effects were observed in male, but not female, bladders. PCBs increased bladder volume and suburothelial βIII-tubulin-positive nerve density compared to vehicle control. A subset of these nerves were sensory peptidergic axons indicated by increased calcitonin gene-related protein (CGRP) positive nerve fibers in mice exposed to the highest PCB dose compared to the lowest PCB dose. PCB-induced increased nerve density was also positively correlated with the number of mast cells in the bladder, suggesting inflammation may be involved. There were no detectable changes in epithelial composition or apoptosis as indicated by expression of cleaved caspase 3, suggesting PCBs do not cause overt toxicity. Bladder volume changes were not accompanied by changes in bladder mass or epithelial thickness, indicating that obstruction was not likely involved. Together, these results are the first to suggest that following developmental exposure, PCBs can distribute to the bladder and alter neuroanatomic development and bladder volume in male mice.
Collapse
Affiliation(s)
- Kimberly P. Keil Stietz
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA,Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA,Corresponding author at: Department of Comparative Biosciences University of Wisconsin-Madison School of Veterinary Medicine, 2015 Linden Drive, Madison, WI 53706, USA.
| | - Conner L. Kennedy
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Anthony Valenzuela
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Alexandra Nunez
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Kathy Wang
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Zunyi Wang
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Peiqing Wang
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Audrey Spiegelhoff
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Birgit Puschner
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Dale E. Bjorling
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA
| |
Collapse
|
9
|
Polychlorinated Biphenyls (PCBs): Risk Factors for Autism Spectrum Disorder? TOXICS 2020; 8:toxics8030070. [PMID: 32957475 PMCID: PMC7560399 DOI: 10.3390/toxics8030070] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) includes a group of multifactorial neurodevelopmental disorders defined clinically by core deficits in social reciprocity and communication, restrictive interests and repetitive behaviors. ASD affects one in 54 children in the United States, one in 89 children in Europe, and one in 277 children in Asia, with an estimated worldwide prevalence of 1-2%. While there is increasing consensus that ASD results from complex gene x environment interactions, the identity of specific environmental risk factors and the mechanisms by which environmental and genetic factors interact to determine individual risk remain critical gaps in our understanding of ASD etiology. Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants that have been linked to altered neurodevelopment in humans. Preclinical studies demonstrate that PCBs modulate signaling pathways implicated in ASD and phenocopy the effects of ASD risk genes on critical morphometric determinants of neuronal connectivity, such as dendritic arborization. Here, we review human and experimental evidence identifying PCBs as potential risk factors for ASD and discuss the potential for PCBs to influence not only core symptoms of ASD, but also comorbidities commonly associated with ASD, via effects on the central and peripheral nervous systems, and/or peripheral target tissues, using bladder dysfunction as an example. We also discuss critical data gaps in the literature implicating PCBs as ASD risk factors. Unlike genetic factors, which are currently irreversible, environmental factors are modifiable risks. Therefore, data confirming PCBs as risk factors for ASD may suggest rational approaches for the primary prevention of ASD in genetically susceptible individuals.
Collapse
|
10
|
Matelski L, Keil Stietz KP, Sethi S, Taylor SL, Van de Water J, Lein PJ. The influence of sex, genotype, and dose on serum and hippocampal cytokine levels in juvenile mice developmentally exposed to a human-relevant mixture of polychlorinated biphenyls. Curr Res Toxicol 2020; 1:85-103. [PMID: 34296199 PMCID: PMC8294704 DOI: 10.1016/j.crtox.2020.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are pervasive environmental contaminants implicated as risk factors for neurodevelopmental disorders (NDDs). Immune dysregulation is another NDD risk factor, and developmental PCB exposures are associated with early life immune dysregulation. Studies of the immunomodulatory effects of PCBs have focused on the higher-chlorinated congeners found in legacy commercial mixtures. Comparatively little is known about the immune effects of contemporary, lower-chlorinated PCBs. This is a critical data gap given recent reports that lower-chlorinated congeners comprise >70% of the total PCB burden in serum of pregnant women enrolled in the MARBLES study who are at increased risk for having a child with an NDD. To examine the influence of PCBs, sex, and genotype on cytokine levels, mice were exposed throughout gestation and lactation to a PCB mixture in the maternal diet, which was based on the 12 most abundant PCBs in sera from MARBLES subjects. Using multiplex array, cytokines were quantified in the serum and hippocampus of weanling mice expressing either a human gain-of-function mutation in ryanodine receptor 1 (T4826I mice), a human CGG premutation repeat expansion in the fragile X mental retardation gene 1 (CGG mice), or both mutations (DM mice). Congenic wildtype (WT) mice were used as controls. There were dose-dependent effects of PCB exposure on cytokine concentrations in the serum but not hippocampus. Differential effects of genotype were observed in the serum and hippocampus. Hippocampal cytokines were consistently elevated in T4826I mice and also in WT animals for some cytokines compared to CGG and DM mice, while serum cytokines were usually elevated in the mutant genotypes compared to the WT group. Males had elevated levels of 19 cytokines in the serum and 4 in the hippocampus compared to females, but there were also interactions between sex and genotype for 7 hippocampal cytokines. Only the chemokine CCL5 in the serum showed an interaction between PCB dose, genotype, and sex. Collectively, these findings indicate differential influences of PCB exposure and genotype on cytokine levels in serum and hippocampal tissue of weanling mice. These results suggest that developmental PCB exposure has chronic effects on baseline serum, but not hippocampal, cytokine levels in juvenile mice.
Collapse
Affiliation(s)
- Lauren Matelski
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Kimberly P. Keil Stietz
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Sandra L. Taylor
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Judy Van de Water
- MIND Institute, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA,Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA,MIND Institute, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA,Corresponding author at: Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA.
| |
Collapse
|
11
|
Aleman M, Zhang R, Feng W, Qi L, Lopez JR, Crowe C, Dong Y, Cherednichenko G, Pessah IN. Dietary Caffeine Synergizes Adverse Peripheral and Central Responses to Anesthesia in Malignant Hyperthermia Susceptible Mice. Mol Pharmacol 2020; 98:351-363. [PMID: 32764093 DOI: 10.1124/mol.120.119412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022] Open
Abstract
Ryanodine receptor (RYR) mutations confer stress-triggered malignant hyperthermia (MH) susceptibility. Dietary caffeine (CAF) is the most commonly consumed psychoactive compound by humans. CAF-triggered Ca2+ release and its influences on skeletal muscle contractility are widely used as experimental tools to study RYR function/dysfunction and diagnose MH susceptibility. We hypothesize that dietary CAF achieving blood levels measured in human plasma exacerbates the penetrance of RYR1 MH susceptibility mutations triggered by gaseous anesthetic, affecting both central and peripheral adverse responses. Heterozygous R163C-RYR1 (HET) MH susceptible mice are used to investigate the influences of dietary CAF on both peripheral and central responses before and after induction of halothane (HAL) maintenance anesthesia under experimental conditions that maintain normal core body temperature. HET mice receiving CAF (plasma CAF 893 ng/ml) have significantly shorter times to respiratory arrest compared with wild type, without altering blood chemistry or displaying hyperthermia or muscle rigor. Intraperitoneal bolus dantrolene before HAL prolongs time to respiratory arrest. A pilot electrographic study using subcutaneous electrodes reveals that dietary CAF does not alter baseline electroencephalogram (EEG) total power, but significantly shortens delay to isoelectric EEG, which precedes respiratory and cardiac arrest. CAF ± HAL are studied on RYR1 single-channel currents and HET myotubes to define molecular mechanisms of gene-by-environment synergism. Strong pharmacological synergism between CAF and HAL is demonstrated in both single-channel and myotube preparations. Central and peripheral nervous systems mediate adverse responses to HAL in a HET model of MH susceptibility exposed to dietary CAF, a modifiable lifestyle factor that may mitigate risks of acute and chronic diseases associated with RYR1 mutations. SIGNIFICANCE STATEMENT: Dietary caffeine at a human-relevant dose synergizes adverse peripheral and central responses to anesthesia in malignant hyperthermia susceptible mice. Synergism of these drugs can be attributed to their actions at ryanodine receptors.
Collapse
Affiliation(s)
- Monica Aleman
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Rui Zhang
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Wei Feng
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Lihong Qi
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Jose R Lopez
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Chelsea Crowe
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Yao Dong
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Genady Cherednichenko
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| |
Collapse
|
12
|
Roles for the Endoplasmic Reticulum in Regulation of Neuronal Calcium Homeostasis. Cells 2019; 8:cells8101232. [PMID: 31658749 PMCID: PMC6829861 DOI: 10.3390/cells8101232] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
By influencing Ca2+ homeostasis in spatially and architecturally distinct neuronal compartments, the endoplasmic reticulum (ER) illustrates the notion that form and function are intimately related. The contribution of ER to neuronal Ca2+ homeostasis is attributed to the organelle being the largest reservoir of intracellular Ca2+ and having a high density of Ca2+ channels and transporters. As such, ER Ca2+ has incontrovertible roles in the regulation of axodendritic growth and morphology, synaptic vesicle release, and neural activity dependent gene expression, synaptic plasticity, and mitochondrial bioenergetics. Not surprisingly, many neurological diseases arise from ER Ca2+ dyshomeostasis, either directly due to alterations in ER resident proteins, or indirectly via processes that are coupled to the regulators of ER Ca2+ dynamics. In this review, we describe the mechanisms involved in the establishment of ER Ca2+ homeostasis in neurons. We elaborate upon how changes in the spatiotemporal dynamics of Ca2+ exchange between the ER and other organelles sculpt neuronal function and provide examples that demonstrate the involvement of ER Ca2+ dyshomeostasis in a range of neurological and neurodegenerative diseases.
Collapse
|
13
|
Rude KM, Pusceddu MM, Keogh CE, Sladek JA, Rabasa G, Miller EN, Sethi S, Keil KP, Pessah IN, Lein PJ, Gareau MG. Developmental exposure to polychlorinated biphenyls (PCBs) in the maternal diet causes host-microbe defects in weanling offspring mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:708-721. [PMID: 31336350 PMCID: PMC6719698 DOI: 10.1016/j.envpol.2019.07.066] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 05/05/2023]
Abstract
The gut microbiota is important for maintaining homeostasis of the host. Gut microbes represent the initial site for toxicant processing following dietary exposures to environmental contaminants. The diet is the primary route of exposure to polychlorinated biphenyls (PCBs), which are absorbed via the gut, and subsequently interfere with neurodevelopment and behavior. Developmental exposures to PCBs have been linked to increased risk of neurodevelopmental disorders (NDD), including autism spectrum disorder (ASD), which are also associated with a high prevalence of gastrointestinal (GI) distress and intestinal dysbiosis. We hypothesized that developmental PCB exposure impacts colonization of the gut microbiota, resulting in GI pathophysiology, in a genetically susceptible host. Mouse dams expressing two heritable human mutations (double mutants [DM]) that result in abnormal Ca2+ dynamics and produce behavioral deficits (gain of function mutation in the ryanodine receptor 1 [T4826I-RYR1] and a human CGG repeat expansion [170-200 CGG repeats] in the fragile X mental retardation gene 1 [FMR1 premutation]). DM and congenic wild type (WT) controls were exposed to PCBs (0-6 mg/kg/d) in the diet starting 2 weeks before gestation and continuing through postnatal day 21 (P21). Intestinal physiology (Ussing chambers), inflammation (qPCR) and gut microbiome (16S sequencing) studies were performed in offspring mice (P28-P30). Developmental exposure to PCBs in the maternal diet caused significant mucosal barrier defects in ileum and colon (increased secretory state and tight junction permeability) of juvenile DM mice. Furthermore, PCB exposure increased the intestinal inflammatory profile (Il6, Il1β, and Il22), and resulted in dysbiosis of the gut microbiota, including altered β-diversity, in juvenile DM mice developmentally exposed to 1 mg/kg/d PCBs when compared to WT controls. Collectively, these findings demonstrate a novel interaction between PCB exposure and the gut microbiota in a genetically susceptible host that provide novel insight into environmental risk factors for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kavi M Rude
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States
| | - Matteo M Pusceddu
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States
| | - Ciara E Keogh
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States
| | - Jessica A Sladek
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States
| | - Gonzalo Rabasa
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States
| | - Elaine N Miller
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States
| | - Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States
| | - Kimberly P Keil
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States
| | - Mélanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States.
| |
Collapse
|
14
|
Pessah IN, Lein PJ, Seegal RF, Sagiv SK. Neurotoxicity of polychlorinated biphenyls and related organohalogens. Acta Neuropathol 2019; 138:363-387. [PMID: 30976975 PMCID: PMC6708608 DOI: 10.1007/s00401-019-01978-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 01/28/2023]
Abstract
Halogenated organic compounds are pervasive in natural and built environments. Despite restrictions on the production of many of these compounds in most parts of the world through the Stockholm Convention on Persistent Organic Pollutants (POPs), many "legacy" compounds, including polychlorinated biphenyls (PCBs), are routinely detected in human tissues where they continue to pose significant health risks to highly exposed and susceptible populations. A major concern is developmental neurotoxicity, although impacts on neurodegenerative outcomes have also been noted. Here, we review human studies of prenatal and adult exposures to PCBs and describe the state of knowledge regarding outcomes across domains related to cognition (e.g., IQ, language, memory, learning), attention, behavioral regulation and executive function, and social behavior, including traits related to attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). We also review current understanding of molecular mechanisms underpinning these associations, with a focus on dopaminergic neurotransmission, thyroid hormone disruption, calcium dyshomeostasis, and oxidative stress. Finally, we briefly consider contemporary sources of organohalogens that may pose human health risks via mechanisms of neurotoxicity common to those ascribed to PCBs.
Collapse
Affiliation(s)
- Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA
| | - Richard F Seegal
- Professor Emeritus, School of Public Health, University at Albany, Rensselaer, NY, USA
| | - Sharon K Sagiv
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
15
|
Zheng J, Yu Y, Feng W, Li J, Liu J, Zhang C, Dong Y, Pessah IN, Cao Z. Influence of Nanomolar Deltamethrin on the Hallmarks of Primary Cultured Cortical Neuronal Network and the Role of Ryanodine Receptors. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:67003. [PMID: 31166131 PMCID: PMC6792378 DOI: 10.1289/ehp4583] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND The pyrethroid deltamethrin (DM) is broadly used for insect control. Although DM hyperexcites neuronal networks by delaying inactivation of axonal voltage-dependent [Formula: see text] channels, this mechanism is unlikely to mediate neurotoxicity at lower exposure levels during critical perinatal periods in mammals. OBJECTIVES We aimed to identify mechanisms by which acute and subchronic DM altered axonal and dendritic growth, patterns of synchronous [Formula: see text] oscillations (SCOs), and electrical spike activity (ESA) functions critical to neuronal network formation. METHODS Measurements of SCOs using [Formula: see text] imaging, ESA using microelectrode array (MEA) technology, and dendritic complexity using Sholl analysis were performed in primary murine cortical neurons from wild-type (WT) and/or ryanodine receptor 1 ([Formula: see text]) mice between 5 and 14 d in vitro (DIV). [Formula: see text] binding analysis and a single-channel voltage clamp were utilized to measure engagement of RyRs as a direct target of DM. RESULTS Neuronal networks responded to DM ([Formula: see text]) as early as 5 DIV, reducing SCO amplitude and depressing ESA and burst frequencies by 60-70%. DM ([Formula: see text]) enhanced axonal growth in a nonmonotonic manner. [Formula: see text] enhanced dendritic complexity. DM stabilized channel open states of RyR1, RyR2, and cortical preparations expressing all three isoforms. DM ([Formula: see text]) altered gating kinetics of RyR1 channels, increasing mean open time, decreasing mean closed time, and thereby enhancing overall open probability. SCO patterns from cortical networks expressing [Formula: see text] were more responsive to DM than WT. [Formula: see text] neurons showed inherently longer axonal lengths than WT neurons and maintained less length-promoting responses to nanomolar DM. CONCLUSIONS Our findings suggested that RyRs were sensitive molecular targets of DM with functional consequences likely relevant for mediating abnormal neuronal network connectivity in vitro. https://doi.org/10.1289/EHP4583.
Collapse
Affiliation(s)
- Jing Zheng
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Yiyi Yu
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wei Feng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Jing Li
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ju Liu
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunlei Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yao Dong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Isaac N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
16
|
Holmes A. The neuroscience and genomics of social behavior. GENES BRAIN AND BEHAVIOR 2019; 18:e12551. [PMID: 30666807 DOI: 10.1111/gbb.12551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|