2
|
Johnson JP, Focken T, Khakh K, Tari PK, Dube C, Goodchild SJ, Andrez JC, Bankar G, Bogucki D, Burford K, Chang E, Chowdhury S, Dean R, de Boer G, Decker S, Dehnhardt C, Feng M, Gong W, Grimwood M, Hasan A, Hussainkhel A, Jia Q, Lee S, Li J, Lin S, Lindgren A, Lofstrand V, Mezeyova J, Namdari R, Nelkenbrecher K, Shuart NG, Sojo L, Sun S, Taron M, Waldbrook M, Weeratunge D, Wesolowski S, Williams A, Wilson M, Xie Z, Yoo R, Young C, Zenova A, Zhang W, Cutts AJ, Sherrington RP, Pimstone SN, Winquist R, Cohen CJ, Empfield JR. NBI-921352, a first-in-class, Na V1.6 selective, sodium channel inhibitor that prevents seizures in Scn8a gain-of-function mice, and wild-type mice and rats. eLife 2022; 11:72468. [PMID: 35234610 PMCID: PMC8903829 DOI: 10.7554/elife.72468] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
NBI-921352 (formerly XEN901) is a novel sodium channel inhibitor designed to specifically target NaV1.6 channels. Such a molecule provides a precision-medicine approach to target SCN8A-related epilepsy syndromes (SCN8A-RES), where gain-of-function (GoF) mutations lead to excess NaV1.6 sodium current, or other indications where NaV1.6 mediated hyper-excitability contributes to disease (Gardella and Møller, 2019; Johannesen et al., 2019; Veeramah et al., 2012). NBI-921352 is a potent inhibitor of NaV1.6 (IC500.051 µM), with exquisite selectivity over other sodium channel isoforms (selectivity ratios of 756 X for NaV1.1, 134 X for NaV1.2, 276 X for NaV1.7, and >583 Xfor NaV1.3, NaV1.4, and NaV1.5). NBI-921352is a state-dependent inhibitor, preferentially inhibiting inactivatedchannels. The state dependence leads to potent stabilization of inactivation, inhibiting NaV1.6 currents, including resurgent and persistent NaV1.6 currents, while sparing the closed/rested channels. The isoform-selective profile of NBI-921352 led to a robust inhibition of action-potential firing in glutamatergic excitatory pyramidal neurons, while sparing fast-spiking inhibitory interneurons, where NaV1.1 predominates. Oral administration of NBI-921352 prevented electrically induced seizures in a Scn8a GoF mouse,as well as in wild-type mouse and ratseizure models. NBI-921352 was effective in preventing seizures at lower brain and plasma concentrations than commonly prescribed sodium channel inhibitor anti-seizure medicines (ASMs) carbamazepine, phenytoin, and lacosamide. NBI-921352 waswell tolerated at higher multiples of the effective plasma and brain concentrations than those ASMs. NBI-921352 is entering phase II proof-of-concept trials for the treatment of SCN8A-developmental epileptic encephalopathy (SCN8A-DEE) and adult focal-onset seizures.
Collapse
Affiliation(s)
- J P Johnson
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Thilo Focken
- Chemistry, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Kuldip Khakh
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | | - Celine Dube
- In Vivo Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | | | | - Girish Bankar
- In Vivo Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - David Bogucki
- Chemistry, Medipure Pharmaceuticals, Burnaby BC, Canada
| | | | - Elaine Chang
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | | - Richard Dean
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Gina de Boer
- Compound Properties, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Shannon Decker
- Chemistry, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | | - Mandy Feng
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Wei Gong
- Chemistry, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | | - Abid Hasan
- Chemistry, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | | - Qi Jia
- Chemistry, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Stephanie Lee
- Compound Properties, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Jenny Li
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Sophia Lin
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Andrea Lindgren
- Compound Properties, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | | - Janette Mezeyova
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Rostam Namdari
- Translational Drug Development, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | | | | - Luis Sojo
- Compound Properties, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Shaoyi Sun
- Chemistry, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Matthew Taron
- Chemistry, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | | - Diana Weeratunge
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | | - Aaron Williams
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Michael Wilson
- Chemistry, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Zhiwei Xie
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Rhena Yoo
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Clint Young
- In Vitro Biology, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Alla Zenova
- Chemistry, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Wei Zhang
- Chemistry, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | - Alison J Cutts
- Scientific Affairs, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | | | | | | - Charles J Cohen
- Executive Team, Xenon Pharmaceuticals, Inc., Burnaby BC, Canada
| | | |
Collapse
|
4
|
Wong JC, Butler KM, Shapiro L, Thelin JT, Mattison KA, Garber KB, Goldenberg PC, Kubendran S, Schaefer GB, Escayg A. Pathogenic in-Frame Variants in SCN8A: Expanding the Genetic Landscape of SCN8A-Associated Disease. Front Pharmacol 2021; 12:748415. [PMID: 34867351 PMCID: PMC8635767 DOI: 10.3389/fphar.2021.748415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/21/2021] [Indexed: 01/11/2023] Open
Abstract
Numerous SCN8A mutations have been identified, of which, the majority are de novo missense variants. Most mutations result in epileptic encephalopathy; however, some are associated with less severe phenotypes. Mouse models generated by knock-in of human missense SCN8A mutations exhibit seizures and a range of behavioral abnormalities. To date, there are only a few Scn8a mouse models with in-frame deletions or insertions, and notably, none of these mouse lines exhibit increased seizure susceptibility. In the current study, we report the generation and characterization of two Scn8a mouse models (ΔIRL/+ and ΔVIR/+) carrying overlapping in-frame deletions within the voltage sensor of domain 4 (DIVS4). Both mouse lines show increased seizure susceptibility and infrequent spontaneous seizures. We also describe two unrelated patients with the same in-frame SCN8A deletion in the DIV S5-S6 pore region, highlighting the clinical relevance of this class of mutations.
Collapse
Affiliation(s)
- Jennifer C Wong
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Kameryn M Butler
- Department of Human Genetics, Emory University, Atlanta, GA, United States.,Greenwood Genetic Center, Greenwood, SC, United States
| | - Lindsey Shapiro
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Jacquelyn T Thelin
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Kari A Mattison
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Kathryn B Garber
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Paula C Goldenberg
- Department of Pediatrics and Medical Genetics, Harvard Medical School, Boston, MA, United States
| | - Shobana Kubendran
- Department of Pediatrics, Kansas University School of Medicine-Wichita, Wichita, KS, United States
| | - G Bradley Schaefer
- University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| |
Collapse
|
7
|
Wong JC, Shapiro L, Thelin JT, Heaton EC, Zaman RU, D'Souza MJ, Murnane KS, Escayg A. Nanoparticle encapsulated oxytocin increases resistance to induced seizures and restores social behavior in Scn1a-derived epilepsy. Neurobiol Dis 2020; 147:105147. [PMID: 33189882 DOI: 10.1016/j.nbd.2020.105147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Oxytocin (OT) has broad effects in the brain and plays an important role in cognitive, social, and neuroendocrine function. OT has also been identified as potentially therapeutic in neuropsychiatric disorders such as autism and depression, which are often comorbid with epilepsy, raising the possibility that it might confer protection against the behavioral and seizure phenotypes in epilepsy. Dravet syndrome (DS) is an early-life encephalopathy associated with prolonged and recurrent early-life febrile seizures (FSs), treatment-resistant afebrile epilepsy, and cognitive and behavioral deficits. De novo loss-of-function mutations in the voltage-gated sodium channel SCN1A are the main cause of DS, while genetic epilepsy with febrile seizures plus (GEFS+), also characterized by early-life FSs and afebrile epilepsy, is typically caused by inherited mutations that alter the biophysical properties of SCN1A. Despite the wide range of available antiepileptic drugs, many patients with SCN1A mutations do not achieve adequate seizure control or the amelioration of associated behavioral comorbidities. In the current study, we demonstrate that nanoparticle encapsulation of OT conferred robust and sustained protection against induced seizures and restored more normal social behavior in a mouse model of Scn1a-derived epilepsy. These results demonstrate the ability of a nanotechnology formulation to significantly enhance the efficacy of OT. This approach will provide a general strategy to enhance the therapeutic potential of additional neuropeptides in epilepsy and other neurological disorders.
Collapse
Affiliation(s)
- Jennifer C Wong
- Department of Human Genetics, Emory University, Atlanta, GA, United States of America.
| | - Lindsey Shapiro
- Department of Human Genetics, Emory University, Atlanta, GA, United States of America
| | - Jacquelyn T Thelin
- Department of Human Genetics, Emory University, Atlanta, GA, United States of America
| | - Elizabeth C Heaton
- Department of Human Genetics, Emory University, Atlanta, GA, United States of America
| | - Rokon U Zaman
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, GA, United States of America
| | - Martin J D'Souza
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, GA, United States of America
| | - Kevin S Murnane
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, GA, United States of America
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA, United States of America
| |
Collapse
|