1
|
Mahrous NN, Albaqami A, Saleem RA, Khoja B, Khan MI, Hawsawi YM. The known and unknown about attention deficit hyperactivity disorder (ADHD) genetics: a special emphasis on Arab population. Front Genet 2024; 15:1405453. [PMID: 39165752 PMCID: PMC11333229 DOI: 10.3389/fgene.2024.1405453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a clinically and genetically heterogeneous neurodevelopmental syndrome characterized by behavioral appearances such as impulsivity, inattention, and hyperactivity. The prevalence of ADHD is high in childhood when compared to adults. ADHD has been significantly advanced by genetic research over the past 25 years. However, it is logically conceivable that both genetic and/or non-genetic factors, such as postnatal environmental and social influences, are associated with ADHD phenotype in Arab populations. While genetic influences are strongly linked with the etiology of ADHD, it remains obscure how consanguinity which is an underlying factor for many genetic diseases, contributes to ADHD subtypes. Arabian Gulf Nations have one the highest rates of consanguineous marriages, and consanguinity plays an important contributing factor in many genetic diseases that exist in higher percentages in Arabian Gulf Nations. Therefore, the current review aims to shed light on the genetic variants associated with ADHD subtypes in Arabian Gulf nations and Saudi Arabia in particular. It also focuses on the symptoms and the diagnosis of ADHD before turning to the neuropsychological pathways and subgroups of ADHD. The impact of a consanguinity-based understanding of the ADHD subtype will help to understand the genetic variability of the Arabian Gulf population in comparison with the other parts of the world and will provide novel information to develop new avenues for future research in ADHD.
Collapse
Affiliation(s)
- Nahed N. Mahrous
- Department of Biological Sciences, College of Science, University of Hafr Al-Batin, Hafr Al- Batin, Saudi Arabia
| | - Amirah Albaqami
- Department of Clinical Laboratory Sciences, Turbah University College, Taif University, Taif, Saudi Arabia
| | - Rimah A. Saleem
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Basmah Khoja
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Mohammed I. Khan
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Yousef M. Hawsawi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Carter MT, Srour M, Au PYB, Buhas D, Dyack S, Eaton A, Inbar-Feigenberg M, Howley H, Kawamura A, Lewis SME, McCready E, Nelson TN, Vallance H. Genetic and metabolic investigations for neurodevelopmental disorders: position statement of the Canadian College of Medical Geneticists (CCMG). J Med Genet 2023; 60:523-532. [PMID: 36822643 DOI: 10.1136/jmg-2022-108962] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/27/2023] [Indexed: 02/25/2023]
Abstract
PURPOSE AND SCOPE The aim of this position statement is to provide recommendations for clinicians regarding the use of genetic and metabolic investigations for patients with neurodevelopmental disorders (NDDs), specifically, patients with global developmental delay (GDD), intellectual disability (ID) and/or autism spectrum disorder (ASD). This document also provides guidance for primary care and non-genetics specialists caring for these patients while awaiting consultation with a clinical geneticist or metabolic specialist. METHODS OF STATEMENT DEVELOPMENT A multidisciplinary group reviewed existing literature and guidelines on the use of genetic and metabolic investigations for the diagnosis of NDDs and synthesised the evidence to make recommendations relevant to the Canadian context. The statement was circulated for comment to the Canadian College of Medical Geneticists (CCMG) membership-at-large and to the Canadian Pediatric Society (Mental Health and Developmental Disabilities Committee); following incorporation of feedback, it was approved by the CCMG Board of Directors on 1 September 2022. RESULTS AND CONCLUSIONS Chromosomal microarray is recommended as a first-tier test for patients with GDD, ID or ASD. Fragile X testing should also be done as a first-tier test when there are suggestive clinical features or family history. Metabolic investigations should be done if there are clinical features suggestive of an inherited metabolic disease, while the patient awaits consultation with a metabolic physician. Exome sequencing or a comprehensive gene panel is recommended as a second-tier test for patients with GDD or ID. Genetic testing is not recommended for patients with NDDs in the absence of GDD, ID or ASD, unless accompanied by clinical features suggestive of a syndromic aetiology or inherited metabolic disease.
Collapse
Affiliation(s)
| | - Myriam Srour
- Division of Neurology, McGill University Health Centre, Montreal, Québec, Canada
- Department of Pediatrics, McGill University, Montréal, QC, Canada
| | - Ping-Yee Billie Au
- Department of Medical Genetics, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Daniela Buhas
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, McGill University, Montreal, Québec, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Sarah Dyack
- Division of Medical Genetics, IWK Health Centre, Halifax, Nova Scotia, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Alison Eaton
- Department of Medical Genetics, Stollery Children's Hospital, Edmonton, Alberta, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Michal Inbar-Feigenberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Heather Howley
- Office of Research Services, CHEO Research Institute, Ottawa, Ontario, Canada
| | - Anne Kawamura
- Division of Developmental Pediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Mental Health and Developmental Disability Committee, Canadian Pediatric Society, Ottawa, ON, Canada
- Canadian Paediatric Society, Toronto, Ontario, Canada
| | - Suzanne M E Lewis
- Department of Medical Genetics, BC Children's and Women's Hospital, Vancouver, British Columbia, Canada
| | - Elizabeth McCready
- Department of Pathology and Molecular Medicine, McMaster University, McMaster University, Hamilton, ON, Canada, Hamilton, Ontario, Canada
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences Centre, Hamilton, ON, Canada
| | - Tanya N Nelson
- Department of Pathology and Laboratory Medicine, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hilary Vallance
- Department of Pathology and Laboratory Medicine, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Koevoet D, Deschamps PKH, Kenemans JL. Catecholaminergic and cholinergic neuromodulation in autism spectrum disorder: A comparison to attention-deficit hyperactivity disorder. Front Neurosci 2023; 16:1078586. [PMID: 36685234 PMCID: PMC9853424 DOI: 10.3389/fnins.2022.1078586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by social impairments and restricted, repetitive behaviors. Treatment of ASD is notoriously difficult and might benefit from identification of underlying mechanisms that overlap with those disturbed in other developmental disorders, for which treatment options are more obvious. One example of the latter is attention-deficit hyperactivity disorder (ADHD), given the efficacy of especially stimulants in treatment of ADHD. Deficiencies in catecholaminergic systems [dopamine (DA), norepinephrine (NE)] in ADHD are obvious targets for stimulant treatment. Recent findings suggest that dysfunction in catecholaminergic systems may also be a factor in at least a subgroup of ASD. In this review we scrutinize the evidence for catecholaminergic mechanisms underlying ASD symptoms, and also include in this analysis a third classic ascending arousing system, the acetylcholinergic (ACh) network. We complement this with a comprehensive review of DA-, NE-, and ACh-targeted interventions in ASD, and an exploratory search for potential treatment-response predictors (biomarkers) in ASD, genetically or otherwise. Based on this review and analysis we propose that (1) stimulant treatment may be a viable option for an ASD subcategory, possibly defined by genetic subtyping; (2) cerebellar dysfunction is pronounced for a relatively small ADHD subgroup but much more common in ASD and in both cases may point toward NE- or ACh-directed intervention; (3) deficiency of the cortical salience network is sizable in subgroups of both disorders, and biomarkers such as eye blink rate and pupillometric data may predict the efficacy of targeting this underlying deficiency via DA, NE, or ACh in both ASD and ADHD.
Collapse
Affiliation(s)
- Damian Koevoet
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands,*Correspondence: Damian Koevoet,
| | - P. K. H. Deschamps
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. L. Kenemans
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
Chehbani F, Tomaiuolo P, Picinelli C, Baccarin M, Castronovo P, Scattoni ML, Gaddour N, Persico AM. Yield of array-CGH analysis in Tunisian children with autism spectrum disorder. Mol Genet Genomic Med 2022; 10:e1939. [PMID: 35762097 PMCID: PMC9356560 DOI: 10.1002/mgg3.1939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder with strong genetic underpinnings. Microarray-based comparative genomic hybridization (aCGH) technology has been proposed as a first-level test in the genetic diagnosis of ASD and of neurodevelopmental disorders in general. METHODS We performed aCGH on 98 Tunisian children (83 boys and 15 girls) diagnosed with ASD according to DSM-IV criteria. RESULTS "Pathogenic" or "likely pathogenic" copy number variants (CNVs) were detected in 11 (11.2%) patients, CNVs of "uncertain clinical significance" in 26 (26.5%), "likely benign" or "benign" CNVs were found in 37 (37.8%) and 24 (24.5%) patients, respectively. Gene set enrichment analysis involving genes spanning rare "pathogenic," "likely pathogenic," or "uncertain clinical significance" CNVs, as well as SFARI database "autism genes" in common CNVs, detected eight neuronal Gene Ontology classes among the top 10 most significant, including synapse, neuron differentiation, synaptic signaling, neurogenesis, and others. Similar results were obtained performing g: Profiler analysis. Neither transcriptional regulation nor immune pathways reached significance. CONCLUSIONS aCGH confirms its sizable diagnostic yield in a novel sample of autistic children from North Africa. Recruitment of additional families is under way, to verify whether genetic contributions to ASD in the Tunisian population, differently from other ethnic groups, may involve primarily neuronal genes, more than transcriptional regulation and immune-related pathways.
Collapse
Affiliation(s)
- Fethia Chehbani
- Department of Psychiatry, Research Laboratory “Vulnerability to Psychotic Disorders LR 05 ES 10”Monastir University HospitalMonastirTunisia
- Faculty of PharmacyUniversity of MonastirMonastirTunisia
| | | | - Chiara Picinelli
- Mafalda Luce Center for Pervasive Developmental DisordersMilanItaly
| | - Marco Baccarin
- Mafalda Luce Center for Pervasive Developmental DisordersMilanItaly
- Department of GeneticsSynlab Suisse SABioggioSwitzerland
| | - Paola Castronovo
- Mafalda Luce Center for Pervasive Developmental DisordersMilanItaly
| | | | - Naoufel Gaddour
- Unit of Child PsychiatryMonastir University HospitalMonastirTunisia
| | - Antonio M. Persico
- Child & Adolescent Neuropsychiatry ProgramModena University Hospital & Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|