1
|
Huang H, Huang J, Lu W, Huang Y, Luo R, Bathalian L, Chen M, Wang X. A Four-Week High-Fat Diet Induces Anxiolytic-like Behaviors through Mature BDNF in the mPFC of Mice. Brain Sci 2024; 14:389. [PMID: 38672038 PMCID: PMC11048392 DOI: 10.3390/brainsci14040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
The effect of a high-fat diet (HFD) on mood is a widely debated topic, with the underlying mechanisms being poorly understood. This study explores the anxiolytic effects of a four-week HFD in C57BL/6 mice. Five-week-old mice were exposed to either an HFD (60% calories from fat) or standard chow diet (CD) for four weeks, followed by cannula implantation, virus infusion, behavioral tests, and biochemical assays. Results revealed that four weeks of an HFD induced anxiolytic-like behaviors and increased the protein levels of mature brain-derived neurotrophic factor (mBDNF) and phosphorylated tyrosine kinase receptor B (p-TrkB) in the medial prefrontal cortex (mPFC). Administration of a BDNF-neutralizing antibody to the mPFC reversed HFD-induced anxiolytic-like behaviors. Elevated BDNF levels were observed in both neurons and astrocytes in the mPFC of HFD mice. Additionally, these mice exhibited a higher number of dendritic spines in the mPFC, as well as upregulation of postsynaptic density protein 95 (PSD95). Furthermore, mRNA levels of the N6-methyladenosine (m6A) demethylase, fat mass and obesity-associated protein (FTO), and the hydrolase matrix metalloproteinase-9 (MMP9), also increased in the mPFC. These findings suggest that an HFD may induce FTO and MMP9, which could potentially regulate BDNF processing, contributing to anxiolytic-like behaviors. This study proposes potential molecular mechanisms that may underlie HFD-induced anxiolytic behaviors.
Collapse
Affiliation(s)
- Huixian Huang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (H.H.); (J.H.); (W.L.); (Y.H.); (R.L.); (L.B.); (M.C.)
| | - Jia Huang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (H.H.); (J.H.); (W.L.); (Y.H.); (R.L.); (L.B.); (M.C.)
| | - Wensi Lu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (H.H.); (J.H.); (W.L.); (Y.H.); (R.L.); (L.B.); (M.C.)
| | - Yanjun Huang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (H.H.); (J.H.); (W.L.); (Y.H.); (R.L.); (L.B.); (M.C.)
| | - Ran Luo
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (H.H.); (J.H.); (W.L.); (Y.H.); (R.L.); (L.B.); (M.C.)
| | - Luqman Bathalian
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (H.H.); (J.H.); (W.L.); (Y.H.); (R.L.); (L.B.); (M.C.)
| | - Ming Chen
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (H.H.); (J.H.); (W.L.); (Y.H.); (R.L.); (L.B.); (M.C.)
- National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuemin Wang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (H.H.); (J.H.); (W.L.); (Y.H.); (R.L.); (L.B.); (M.C.)
- National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
2
|
Witkin JM, Shafique H, Smith JL, Cerne R. Is there a biochemical basis for purinergic P2X3 and P2X4 receptor antagonists to be considered as anti-seizure medications? Biochem Pharmacol 2024; 222:116046. [PMID: 38341001 DOI: 10.1016/j.bcp.2024.116046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/15/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Patients with epilepsy require improved medications. Purinergic receptors were identified as late as 1976 and are slowly emerging as potential drug targets for the discovery of antiseizure medications. While compounds interacting with these receptors have been approved for use as medicines (e.g., gefapixant for cough) and continue to be explored for a number of diseases (e.g., pain, cancer), there have been no purinergic receptor antagonists that have been advanced for epilepsy. There are very few studies on the channel conducting receptors, P2X3 and P2X4, that suggest their possible role in seizure generation or control. However, the limited data available provides some compelling reasons to believe that they could be valuable antiseizure medication drug targets. The data implicating P2X3 and P2X4 receptors in epilepsy includes the role played by ATP in neuronal excitability and seizures, receptor localization, increased receptor expression in epileptic brain, the involvement of these receptors in seizure-associated inflammation, crosstalk between these purinergic receptors and neuronal processes involved in seizures (GABAergic and glutamatergic neurotransmission), and the significant attenuation of seizures and seizure-like activity with P2X receptor blockade. The discovery of new and selective antagonists for P2X3 and P2X4 receptors is ongoing, armed with new structural data to guide rational design. The availability of safe, brain-penetrant compounds will likely encourage the clinical exploration of epilepsy as a disease entity.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA; Department of Neuroscience and Trauma Research, Ascension St. Vincent, Indianapolis, IN, USA; Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | | | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA; Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Mut-Arbona P, Sperlágh B. P2 receptor-mediated signaling in the physiological and pathological brain: From development to aging and disease. Neuropharmacology 2023; 233:109541. [PMID: 37062423 DOI: 10.1016/j.neuropharm.2023.109541] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
The purinergic pathway mediates both pro-inflammatory and anti-inflammatory responses, whereas the breakdown of adenosine triphosphate (ATP) is in a critical equilibrium. Under physiological conditions, extracellular ATP is maintained at a nanomolar concentration. Whether released into the medium following tissue damage, inflammation, or hypoxia, ATP is considered a clear indicator of cell damage and a marker of pathological conditions. In this overview, we provide an update on the participation of P2 receptor-mediated purinergic signaling in normal and pathological brain development, with special emphasis on neurodevelopmental psychiatric disorders. Since purinergic signaling is ubiquitous, it is not surprising that it plays a prominent role in developmental processes and pathological alterations. The main aim of this review is to conceptualize the time-dependent dynamic changes in the participation of different players in the purinome in shaping the normal and aberrant developmental patterns and diseases of the central nervous system over one's lifespan.
Collapse
Affiliation(s)
- Paula Mut-Arbona
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai Doctoral School, Semmelweis University, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai Doctoral School, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
4
|
Shigetomi E, Koizumi S. The role of astrocytes in behaviors related to emotion and motivation. Neurosci Res 2023; 187:21-39. [PMID: 36181908 DOI: 10.1016/j.neures.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 10/14/2022]
Abstract
Astrocytes are present throughout the brain and intimately interact with neurons and blood vessels. Three decades of research have shown that astrocytes reciprocally communicate with neurons and other non-neuronal cells in the brain and dynamically regulate cell function. Astrocytes express numerous receptors for neurotransmitters, neuromodulators, and cytokines and receive information from neurons, other astrocytes, and other non-neuronal cells. Among those receptors, the main focus has been G-protein coupled receptors. Activation of G-protein coupled receptors leads to dramatic changes in intracellular signaling (Ca2+ and cAMP), which is considered a form of astrocyte activity. Methodological improvements in measurement and manipulation of astrocytes have advanced our understanding of the role of astrocytes in circuits and have begun to reveal unexpected functions of astrocytes in behavior. Recent studies have suggested that astrocytic activity regulates behavior flexibility, such as coping strategies for stress exposure, and plays an important role in behaviors related to emotion and motivation. Preclinical evidence suggests that impairment of astrocytic function contributes to psychiatric diseases, especially major depression. Here, we review recent progress on the role of astrocytes in behaviors related to emotion and motivation.
Collapse
Affiliation(s)
- Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan; Yamanashi GLIA Center, Graduate School of Medical Science, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan.
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan; Yamanashi GLIA Center, Graduate School of Medical Science, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan.
| |
Collapse
|