1
|
Gom RC, George AG, Harris SA, Wickramarachchi P, Bhatt D, Acharjee S, Pittman QJ, Hill MN, Colangeli R, Teskey GC. Emotional comorbidities in epilepsy result from seizure-induced corticosterone activity. Neurobiol Stress 2024; 33:100678. [PMID: 39497812 PMCID: PMC11533717 DOI: 10.1016/j.ynstr.2024.100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
People with epilepsy often have psychiatric comorbidities that can significantly impair their quality of life. We previously reported that repeated seizure activity persistently alters endocannabinoid (eCB) signaling in the amygdala which accounts for comorbid emotional dysregulation in rats, however, the mechanism by which these alterations in eCB signaling within the epileptic brain occur is unclear. Endocannabinoid signaling is influenced by corticosterone (CORT) to modulate cognitive and emotional processes and a hyperactive hypothalamic-pituitary-adrenal (HPA) axis occurs in both people with epilepsy and nonhuman animal models of epilepsy. We employed selective pharmacological tools and a variety of approaches including whole-cell patch-clamp electrophysiology, behavioural paradigms and biochemical assays in amygdala kindled adult male Long-Evans rats. We aimed to determine whether seizures induce hypersecretion of CORT and the role this plays in eCB system dysregulation, impaired fear memory, and anxiety-like behaviours associated with seizure activity. Plasma CORT levels were significantly and consistently elevated following seizures over the course of kindling. Pre-seizure administration with the CORT synthesis inhibitor metyrapone prevented this seizure-induced CORT increase, prevented amygdala anandamide downregulation, and synaptic alteration induced by seizure activity. Moreover, treatment with metyrapone or combined glucocorticoid receptor (GR)/mineralocorticoid receptor (MR) antagonists prior to each elicited seizure were equally effective in preventing chronically altered anxiety-like behaviour and fear memory responses. Inhibiting seizure-induced corticosterone synthesis, or directly blocking the effects of CORT at GR/MR prevents deleterious changes in emotional processing and could be a treatment option for emotional comorbidities in epilepsy.
Collapse
Affiliation(s)
- Renaud C. Gom
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Antis G. George
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Sydney A. Harris
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Pasindu Wickramarachchi
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Dhyey Bhatt
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Shaona Acharjee
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Quentin J. Pittman
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Matthew N. Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Roberto Colangeli
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, 60126, Ancona, Italy
| | - G. Campbell Teskey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
2
|
Volitaki E, Forro T, Li K, Nevian T, Ciocchi S. Activity of ventral hippocampal parvalbumin interneurons during anxiety. Cell Rep 2024; 43:114295. [PMID: 38796850 DOI: 10.1016/j.celrep.2024.114295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/29/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Anxiety plays a key role in guiding behavior in response to potential threats. Anxiety is mediated by the activation of pyramidal neurons in the ventral hippocampus (vH), whose activity is controlled by GABAergic inhibitory interneurons. However, how different vH interneurons might contribute to anxiety-related processes is unclear. Here, we investigate the role of vH parvalbumin (PV)-expressing interneurons while mice transition from safe to more anxiogenic compartments of the elevated plus maze (EPM). We find that vH PV interneurons increase their activity in anxiogenic EPM compartments concomitant with dynamic changes in inhibitory interactions between PV interneurons and pyramidal neurons. By optogenetically inhibiting PV interneurons, we induce an increase in the activity of vH pyramidal neurons and persistent anxiety. Collectively, our results suggest that vH inhibitory microcircuits may act as a trigger for enduring anxiety states.
Collapse
Affiliation(s)
- Emmanouela Volitaki
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Thomas Forro
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Kaizhen Li
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Thomas Nevian
- Neuronal Plasticity Group, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Stéphane Ciocchi
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland.
| |
Collapse
|
3
|
Mukadam AA, Chester JA. Line- and sex-dependent effects of juvenile stress on contextual fear- and anxiety-related behavior in high- and low-alcohol-preferring mouse lines. Behav Brain Res 2024; 463:114899. [PMID: 38342379 PMCID: PMC10954351 DOI: 10.1016/j.bbr.2024.114899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Juvenile stress (JS) is a known risk factor for the development of alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD), both of which are frequently co-morbid. Data suggest there may be common, genetically-influenced biological responses to stress that contribute to the development of both AUD and PTSD. The present study investigated the impact of JS on contextual fear learning and extinction, as well as corticosterone (CORT) responses before and after JS, before and after contextual fear conditioning (CFC), and after fear extinction in male and female high-alcohol-preferring (HAP2) and low-alcohol-preferring (LAP2) mouse lines. We also measured unconditioned anxiety-related behavior in the light-dark-transition test before CFC. HAP2 and LAP2 mice did not differ in fear acquisition, but HAP2 mice showed faster fear extinction compared to LAP2 mice. No effects of JS were seen in HAP2 mice, whereas in LAP2 mice, JS reduced fear acquisition in males and facilitated fear extinction in females. Females showed greater fear-related behavior relative to males, regardless of subgroup. HAP2 males demonstrated more anxiolytic-like responses than LAP2 males and LAP2 females demonstrated more anxiolytic-like responses than LAP2 males in the light-dark transition test. HAP2 and LAP2 mice did not differ in CORT during the juvenile stage; however, adult LAP2 mice showed greater CORT levels than HAP2 mice at baseline and after CFC and extinction testing. These findings build upon prior work in these unique mouse lines that differ in genetic propensity toward alcohol preference and provide new information regarding contextual fear learning and extinction mechanisms theorized to contribute to co-morbid AUD and PTSD.
Collapse
Affiliation(s)
- Arbaaz A Mukadam
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA.
| | - Julia A Chester
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|