1
|
Gorzelak P, Torres Jr. L, Kołbuk D, Grun TB, Kowalewski M. Geochemical signatures and nanomechanical properties of echinoid tests from nearshore habitats of Florida: environmental and physiological controls on echinoid biomineralization. PeerJ 2025; 13:e18688. [PMID: 39872031 PMCID: PMC11771306 DOI: 10.7717/peerj.18688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/20/2024] [Indexed: 01/29/2025] Open
Abstract
The mechanisms that regulate minor and trace element biomineralization in the echinoid skeleton can be primarily controlled biologically (i.e., by the organism and its vital effects) or by extrinsic environmental factors. Assessing the relative role of those controls is essential for understanding echinoid biomineralization, taphonomy, diagenesis, and their potential as geochemical archives. In this study, we (1) contrast geochemical signatures of specimens collected across multiple taxa and environmental settings to assess in situ the effects of environmental and physiological factors on skeletal biomineralogy; and (2) analyze the nanomechanical properties of the echinoid skeleton to assess potential linkages between magnesium/calcium (Mg/Ca) ratios and skeletal nanohardness. Live specimens of sand dollars and sea biscuits (Mellita tenuis, Encope spp., Leodia sexiesperforata, and Clypeaster subdepressus) were collected from three different salinity regimes: (1) a coastal region of Cedar Key influenced by freshwater input from Suwannee River, with low and fluctuating salinity; (2) St. James Bay with less fluctuating, higher salinity; and (3) Florida Keys with stable, fully marine salinity conditions. No clear relationship was found between the bulk skeletal barium/calcium (Ba/Ca), zinc/calcium (Zn/Ca), sodium/calcium (Na/Ca), cadmium/calcium (Cd/Ca), copper/calcium (Cu/Ca), phosphorous/calcium (P/Ca), lead/calcium (Pb/Ca), boron/calcium (B/Ca), manganese/calcium (Mn/Ca) ratios pooled across all taxa. In contrast, bulk Mg/Ca, strontium/calcium (Sr/Ca), sulfur/calcium (S/Ca) and lithium/calcium (Li/Ca) ratios exhibited notable differences between the three regions, indicating that distribution of these elements can be at least partly influenced by environmental factors such as salinity. However, such patterns were highly variable across taxa and regions, indicating that both environmental and physiological factors influenced geochemical signatures to varying degrees, depending on the species and environmental setting. In addition, regardless of species identity, different types of stereom within single tests were characterized by distinct skeletal Mg/Ca ratios and nanohardness. The inner galleried and coarse labyrinthic stereom typically exhibited a lower Mg/Ca ratio and nanohardness than the outer imperforate stereom layer that locally forms tubercles. Such heterogeneity in Mg distribution within single specimens cannot be ascribed solely to environmental changes, indicating that these echinoids actively regulate their intraskeletal Mg content: the higher magnesium concentration at the tubercles relative to that of the underlying stereom may be interpreted as a strategy for enhancing their mechanical strength to withstand surface friction and wear. The results suggest that the trace element composition of echinoid tests is a complex outcome of environmental and physiological factors.
Collapse
Affiliation(s)
| | - Luis Torres Jr.
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America
| | - Dorota Kołbuk
- UCD Earth Institute and School of Biology and Environmental Science, Science Centre West, University College Dublin, Dublin, Ireland
| | - Tobias B. Grun
- Department of Fundamentals of Nature Conservation and Data Management, Bavarian State Office for the Environment, Hof, Germany
| | - Michał Kowalewski
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
2
|
Knight B, Mondal R, Han N, Pietra NF, Hall BA, Edgar KJ, Vaissier Welborn V, Madsen LA, De Yoreo JJ, Dove PM. Kinetics of Calcite Nucleation onto Sulfated Chitosan Derivatives and Implications for Water-Polysaccharide Interactions during Crystallization of Sparingly Soluble Salts. CRYSTAL GROWTH & DESIGN 2024; 24:6338-6353. [PMID: 39131446 PMCID: PMC11311137 DOI: 10.1021/acs.cgd.4c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024]
Abstract
Anionic macromolecules are found at sites of CaCO3 biomineralization in diverse organisms, but their roles in crystallization are not well-understood. We prepared a series of sulfated chitosan derivatives with varied positions and degrees of sulfation, DS(SO3 -), and measured calcite nucleation rate onto these materials. Fitting the classical nucleation theory model to the kinetic data reveals the interfacial free energy of the calcite-polysaccharide-solution system, γnet, is lowest for nonsulfated controls and increases with DS(SO3 -). The kinetic prefactor also increases with DS(SO3 -). Simulations of Ca2+-H2O-chitosan systems show greater water structuring around sulfate groups compared to uncharged substituents, independent of sulfate location. Ca2+-SO3 - interactions are solvent-separated by distances that are inversely correlated with DS(SO3 -) of the polysaccharide. The simulations also predict SO3 - and NH3 + groups affect the solvation waters and HCO3 - ions associated with Ca2+. Integrating the experimental and computational evidence suggests sulfate groups influence nucleation by increasing the difficulty of displacing near-surface water, thereby increasing γnet. By correlating γnet and net charge per monosaccharide for diverse polysaccharides, we suggest the solvent-separated interactions of functional groups with Ca2+ influence thermodynamic and kinetic components to crystallization by similar solvent-dominated processes. The findings reiterate the importance of establishing water structure and properties at macromolecule-solution interfaces.
Collapse
Affiliation(s)
- Brenna
M. Knight
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ronnie Mondal
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nizhou Han
- Department
of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nicholas F. Pietra
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Brady A. Hall
- GlycoMIP, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin J. Edgar
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Valerie Vaissier Welborn
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Louis A. Madsen
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - James J. De Yoreo
- Physical
Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department
of Materials Science and Engineering, University
of Washington, Seattle, Washington 98195, United States
| | - Patricia M. Dove
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Materials Science and Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
3
|
Kołbuk D, Di Giglio S, M'Zoudi S, Dubois P, Stolarski J, Gorzelak P. Effects of seawater Mg 2+ /Ca 2+ ratio and diet on the biomineralization and growth of sea urchins and the relevance of fossil echinoderms to paleoenvironmental reconstructions. GEOBIOLOGY 2020; 18:710-724. [PMID: 32772500 DOI: 10.1111/gbi.12409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
It has been argued that skeletal Mg/Ca ratio in echinoderms is mostly governed by Mg2+ and Ca2+ concentrations in the ambient seawater. Accordingly, well-preserved fossil echinoderms were used to reconstruct Phanerozoic seawater Mg2+ /Ca2+ ratio. However, Mg/Ca ratio in echinoderm skeleton can be affected by a number of environmental and physiological factors, the effects of which are still poorly understood. Notably, experimental data supporting the applicability of echinoderms in paleoenvironmental reconstructions remain limited. Here, we investigated the effect of ambient Mg2+ /Ca2+ seawater ratio and diet on skeletal Mg/Ca ratio and growth rate in two echinoid species (Psammechinus miliaris and Prionocidaris baculosa). Sea urchins were tagged with manganese and then cultured in different Mg2+ /Ca2+ conditions to simulate fluctuations in the Mg2+ /Ca2+ seawater ratios in the Phanerozoic. Simultaneously, they were fed on a diet containing different amounts of magnesium. Our results show that the skeletal Mg/Ca ratio in both species varied not only between ossicle types but also between different types of stereom within a single ossicle. Importantly, the skeletal Mg/Ca ratio in both species decreased proportionally with decreasing seawater Mg2+ /Ca2+ ratio. However, sea urchins feeding on Mg-enriched diet produced a skeleton with a higher Mg/Ca ratio. We also found that although incubation in lower ambient Mg2+ /Ca2+ ratio did not affect echinoid respiration rates, it led to a decrease or inhibition of their growth. Overall, these results demonstrate that although skeletal Mg/Ca ratios in echinoderms can be largely determined by seawater chemistry, the type of diet may also influence skeletal geochemistry, which imposes constraints on the application of fossil echinoderms as a reliable proxy. The accuracy of paleoseawater Mg2+ /Ca2+ calculations is further limited by the fact that Mg partition coefficients vary significantly at different scales (between species, specimens feeding on different types of food, different ossicle types, and stereom types within a single ossicle).
Collapse
Affiliation(s)
- Dorota Kołbuk
- Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland
| | - Sarah Di Giglio
- Laboratoire de Biologie Marine, Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Saloua M'Zoudi
- Laboratoire de Biologie Marine, Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Philippe Dubois
- Laboratoire de Biologie Marine, Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium
| | | | | |
Collapse
|
4
|
Iglikowska A, Humphreys-Williams E, Przytarska J, Chełchowski M, Kukliński P. Minor and trace elements in skeletons of Arctic echinoderms. MARINE POLLUTION BULLETIN 2020; 158:111377. [PMID: 32753172 DOI: 10.1016/j.marpolbul.2020.111377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/30/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
We report the ratios of minor (K/Ca, Na/Ca, P/Ca, S/Ca) and trace elements (Al/Ca, Ba/Ca, Fe/Ca, Mn/Ca and Zn/Ca) in skeletons of five Arctic echinoderm species representing three classes: Asteroidea, Ophiuroidea, Crinoidea. We found that skeletons of Arctic echinoderms show a unique, species-specific trace element composition that may suggest that incorporation of elements into the skeleton is biologically controlled by the organism. On the other hand, the concentration of some minor elements in skeletal parts exhibit patterns that are consistent with elemental concentrations in seawater, indicating that formation of echinoderm skeletons is environmentally controlled. Seawater is the main source of ions and compounds needed for skeletal formation and maintaining similar concentrations most likely reduces the biological cost related to selective uptake of ions. Additionally, Al, Ba, Fe, Mg and Mn showed station specific variation in elemental concentration which again suggests that accumulation of metals can be shaped by environmental concentrations.
Collapse
Affiliation(s)
- A Iglikowska
- University of Gdańsk, Faculty of Biology, Department of Genetics and Biosystematics, Laboratory of Biosystematics and Ecology of Aquatic Invertebrates, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - E Humphreys-Williams
- Imaging and Analysis Centre, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - J Przytarska
- Marine Ecology Department, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - M Chełchowski
- Marine Ecology Department, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - P Kukliński
- Marine Ecology Department, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
5
|
Kołbuk D, Dubois P, Stolarski J, Gorzelak P. Effects of seawater chemistry (Mg 2+/Ca 2+ ratio) and diet on the skeletal Mg/Ca ratio in the common sea urchin Paracentrotus lividus. MARINE ENVIRONMENTAL RESEARCH 2019; 145:22-26. [PMID: 30777345 DOI: 10.1016/j.marenvres.2019.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
It has been argued that concentration of major metallic ions such as Mg2+ and Ca2+ plays a role in determining the composition of the echinoderm skeleton. Consequently, in several studies Mg/Ca ratio from modern and fossil echinoderm ossicles was used as a proxy of secular Mg2+/Ca2+ changes of Phanerozoic seawater. However, although significant progress has been made in understanding biomineralization of echinoderms, it is still largely unknown what are the sources and physiological pathways of major ions that contribute to skeleton formation. Herein we tested the effects of modifications of ambient seawater Mg2+/Ca2+ ratio (which is typically ∼5) and Mg-enrichment of the diet on the Mg/Ca ratio in regenerating spines of sea urchin Paracentrotus lividus under experimental conditions. We found that sea urchins cultured in seawater with Mg2+/Ca2+ ratio decreased to ∼1.9 produced a skeleton with also decreased Mg/Ca ratio. However, the skeleton of specimens fed on a Mg-enriched diet showed significantly higher Mg/Ca ratio. This suggests that the seawater is an important but not the only source of ions that contributes to the Mg/Ca ratio of the skeleton. Consequently, the reliability of geochemical models that link directly seawater chemistry with the Mg/Ca ratio of the skeleton should be reevaluated.
Collapse
Affiliation(s)
- Dorota Kołbuk
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, PL-00-818, Warsaw, Poland
| | - Philippe Dubois
- Université Libre de Bruxelles, Faculté des Sciences, Laboratoire de Biologie Marine, CP 160/15, av. F.D. Roosevelt, 50 B-1050, Bruxelles, Belgium
| | - Jarosław Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, PL-00-818, Warsaw, Poland
| | - Przemysław Gorzelak
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, PL-00-818, Warsaw, Poland.
| |
Collapse
|
6
|
Stanienda-Pilecki KJ. Magnesium calcite in Muschelkalk limestones of the Polish part of the Germanic Basin. CARBONATES AND EVAPORITES 2018; 33:801-821. [PMID: 30524175 PMCID: PMC6244636 DOI: 10.1007/s13146-018-0437-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/16/2018] [Indexed: 06/09/2023]
Abstract
Magnesium calcite, which is usually observed in many natural low-temperature environments, was identified in Triassic limestones of the Polish part of the Germanic Basin. The occurrence of unstable magnesium calcite in Triassic limestones is remarkable. High-Mg calcite was identified in all beds of the Muschelkalk Karchowice Formation: Lower Crinoidea Beds, Lower Biohermal Beds, Upper Crinoidea Beds and Upper Biohermal Beds. The general chemical formulas of magnesium calcite of mentioned unites are: (Ca0.87-0.80,Mg0.13-0.20)CO3, (Ca0.83-0.75,Mg0.17-0.25)CO3, (Ca0.81,Mg0.19)CO3, (Ca0.78-0.77,Mg0.22-0.23)CO3 respectively. This mineral originated probably during the early stage of diagenesis, during compaction of limestones deposited in a warm, shallow marine environment. Some amounts of magnesium come from high-Mg skeletons of marine organisms (such as echinoderms). Diagnenetic processes and the conditions in seawater, especially higher salinity, influence the preservation of high magnesium calcite in the Muschelkalk limestone of the Polish part of the Germanic Basin.
Collapse
Affiliation(s)
- Katarzyna J. Stanienda-Pilecki
- Department of Applied Geology, Faculty of Mining and Geology, Silesian University of Technology, ul. Akademicka 2, 44-100 Gliwice, Poland
| |
Collapse
|
7
|
Iglikowska A, Najorka J, Voronkov A, Chełchowski M, Kukliński P. Variability in magnesium content in Arctic echinoderm skeletons. MARINE ENVIRONMENTAL RESEARCH 2017; 129:207-218. [PMID: 28624116 DOI: 10.1016/j.marenvres.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 05/27/2023]
Abstract
In this study, 235 measurements of magnesium concentration in echinoderm's skeletons were compiled, including 30 species and 216 specimens collected from northern and western Barents Sea. We aimed to reveal the scale of Mg variation in the skeletons of Arctic echinoderms. Furthermore, we attempted to examine whether the Mg concentration in echinoderm skeletons is determined primarily by biological factors or is a passive result of environmental influences. We found that the Mg concentration in echinoderm skeletons was characteristic for particular echinoderm classes or was even species-specific. The highest Mg contents were observed in asteroids, followed by ophiuroids, crinoids, and holothuroids, with the lowest values in echinoids. These results strongly imply that biological factors play an important role in controlling the incorporation of Mg into the skeletons of the studied individuals.
Collapse
Affiliation(s)
- A Iglikowska
- Marine Ecology Department, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland.
| | - J Najorka
- Core Research Laboratories, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | - A Voronkov
- Institute of Marine Research, N-9294, Tromsø, Norway.
| | - M Chełchowski
- Marine Ecology Department, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland.
| | - P Kukliński
- Marine Ecology Department, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland.
| |
Collapse
|
8
|
Coronado I, Pérez-Huerta A, Rodríguez S. Analogous biomineralization processes between the fossil coral Calceola sandalina (Rugosa, Devonian) and other Recent and fossil cnidarians. J Struct Biol 2016; 196:173-186. [PMID: 27327265 DOI: 10.1016/j.jsb.2016.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/12/2016] [Accepted: 06/17/2016] [Indexed: 11/18/2022]
Abstract
The current work represents a distinctive study about the biomineral properties of exceptionally good preserved skeletons of Calceola sandalina from the Middle Devonian of Couvin (Belgium), Smara (Morocco) and (Algeria) and their relation in the evolution of biomineralization of cnidarians. Structural and crystallographic analyses of the skeletons have been done by petrographic microscopy, electron scanning microscopy (SEM), atomic force microscopy (AFM), electron backscatter diffraction (EBSD), computer-integrated polarization microscopy (CIP) and electron microprobe analysis (EMPA). Calceola skeletons have many similarities with other cnidarians, mainly with other Palaeozoic corals as Syringoporicae: The microcrystals are composed of co-oriented nanocrystals that remind to mesocrystals, suggesting a biocrystallization process by particle attachment (CPA). The relationship between the nanocrystals and microcrystals suggest a growth mode similar to mineral bridges. A similar model was described for Syringoporicae corals (Tabulata) and it is similar to the coordinated-growth mode described in scleractinians and molluscs. Calceola skeletons show also a convergent structure with scleractinian forming Rapid Accretion Deposits (RAD), which share some structural and chemical properties. These evidences suggest analogous processes of biomineralization derived from a stem group of cnidarians. The results of this paper highlight the value of biomineralization studies in fossil organisms to understand the evolution of biomineralization mechanism through Phanerozoic.
Collapse
Affiliation(s)
- Ismael Coronado
- Departamento de Paleontología, Universidad Complutense de Madrid, C/ José Antonio Nováis 2, Ciudad Universitaria, E-28040 Madrid, Spain.
| | - Alberto Pérez-Huerta
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Sergio Rodríguez
- Departamento de Paleontología, Universidad Complutense de Madrid, C/ José Antonio Nováis 2, Ciudad Universitaria, E-28040 Madrid, Spain; Instituto de Geociencias (IGEO. CSIC-UCM), C/ José Antonio Nováis 2, Ciudad Universitaria, E-28040 Madrid, Spain.
| |
Collapse
|
9
|
Coronado I, Fernández-Martínez E, Rodríguez S, Tourneur F. Reconstructing a Carboniferous inferred coral-alcyonarian association using a biomineralogical approach. GEOBIOLOGY 2015; 13:340-356. [PMID: 25857932 DOI: 10.1111/gbi.12133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 02/20/2015] [Indexed: 06/04/2023]
Abstract
The taxonomic assignation and ecological implications of the genus Syringoalcyon Termier & Termier, 1945 have been a palaeontological problem for a long time. Carboniferous material from Morocco and Spain has been studied using a biomineralogical approach by means of petrographic microscopy, SEM, AFM, EMPA and CIP microscopy analysis. Detailed morphological, structural, chemical composition and crystallographic data enable a deeper understanding of the nature of Syringoalcyon. The coral walls and the so-called epithecal scales exhibit conspicuous differences in microstructure (lamellae and holacanthine fibres in the coral vs. single crystal in scales), nanostructure (pill-shaped vs. granule-shaped nanocrystals), composition (LMC vs. HMC) and crystallographic orientation. The results of these analyses imply that Syringoalcyon is an association between the tabulate coral Syringopora and an epibiont. They also suggest that the epibiont was an alcyonarian (a rare occurrence in the fossil record) that was attached to the syringoporoid. This work highlights the utility of the biomineralizational approaches for solving palaeontological problems, such as systematic affinities, and for advancing knowledge of the evolution of biocrystallization processes.
Collapse
Affiliation(s)
- I Coronado
- Departamento de Paleontología, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
| | - E Fernández-Martínez
- Departamento de Geografía y Geología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, Spain
| | - S Rodríguez
- Departamento de Paleontología, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
- Instituto de Geociencias (IGEO. CSIC-UCM), Ciudad Universitaria, Madrid, Spain
| | - F Tourneur
- Pierres et Marbres de Wallonie, Naninne, Belgium
| |
Collapse
|
10
|
Ultrascale and microscale growth dynamics of the cidaroid spine ofPhyllacanthus imperialisrevealed by26Mg labeling and NanoSIMS isotopic imaging. J Morphol 2014; 275:788-96. [DOI: 10.1002/jmor.20260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/21/2014] [Accepted: 02/02/2014] [Indexed: 11/07/2022]
|