1
|
Planktonic foraminifera organic carbon isotopes as archives of upper ocean carbon cycling. Nat Commun 2022; 13:4841. [PMID: 35977937 PMCID: PMC9386020 DOI: 10.1038/s41467-022-32480-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 08/01/2022] [Indexed: 11/25/2022] Open
Abstract
The carbon cycle is a key regulator of Earth’s climate. On geological time-scales, our understanding of particulate organic matter (POM), an important upper ocean carbon pool that fuels ecosystems and an integrated part of the carbon cycle, is limited. Here we investigate the relationship of planktonic foraminifera-bound organic carbon isotopes (δ13Corg-pforam) with δ13Corg of POM (δ13Corg-POM). We compare δ13Corg-pforam of several planktonic foraminifera species from plankton nets and recent sediment cores with δ13Corg-POM on a N-S Atlantic Ocean transect. Our results indicate that δ13Corg-pforam of planktonic foraminifera are remarkably similar to δ13Corg-POM. Application of our method on a glacial sample furthermore provided a δ13Corg-pforam value similar to glacial δ13Corg-POM predictions. We thus show that δ13Corg-pforam is a promising proxy to reconstruct environmental conditions in the upper ocean, providing a route to isolate past variations in δ13Corg-POM and better understanding of the evolution of the carbon cycle over geological time-scales. Our understanding of ancient organic carbon cycling in marine environments is limited. Here the authors developed a method to reconstruct upper ocean organic carbon chemistry in the geological past, which when applied, can help to create a better understanding of the evolution of the carbon cycle.
Collapse
|
2
|
Betti M, Ciacci C, Abramovich S, Frontalini F. Protein Extractions from Amphistegina lobifera: Protocol Development and Optimization. Life (Basel) 2021; 11:life11050418. [PMID: 34063137 PMCID: PMC8148146 DOI: 10.3390/life11050418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Proteins are essential to life, and the evaluation of their content, identification, and modification represents a fundamental assay in biochemistry research. Different analytical techniques and protocols have been specifically designed but have rarely been compared. Here, we test and compare a variety of methodologies and treatments for the quantification of proteins in Amphistegina lessonii, a larger symbiont-bearing benthic foraminiferal species. These analyses specifically include (a) lysis buffer (homemade vs. RIPA), (b) protein assays (Lowry, BCA, and Bradford), (c) ultrasonic bath treatment, and (d) protein staining (silver staining vs. Coomassie blue). On the basis of the comparative outcome, we suggest using the homemade lysis buffer, Lowry or BCA assays, ultrasonic bath treatment, and silver stain to maximize the extraction and characterization of protein for A. lessonii. This protocol might be suitable and extended to other benthic foraminiferal species, including the smaller ones.
Collapse
Affiliation(s)
- Michele Betti
- Department of Biomolecular Science, Urbino University, 61029 Urbino, Italy; (M.B.); (C.C.)
| | - Caterina Ciacci
- Department of Biomolecular Science, Urbino University, 61029 Urbino, Italy; (M.B.); (C.C.)
| | - Sigal Abramovich
- Department of Earth and Environmental Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Fabrizio Frontalini
- Department of Pure and Applied Sciences, Urbino University, 61029 Urbino, Italy
- Correspondence:
| |
Collapse
|
3
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
4
|
Gardères J, Domart-Coulon I, Marie A, Hamer B, Batel R, Müller WEG, Bourguet-Kondracki ML. Purification and partial characterization of a lectin protein complex, the clathrilectin, from the calcareous sponge Clathrina clathrus. Comp Biochem Physiol B Biochem Mol Biol 2016; 200:17-27. [PMID: 27113336 DOI: 10.1016/j.cbpb.2016.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/14/2016] [Accepted: 04/20/2016] [Indexed: 11/26/2022]
Abstract
Carbohydrate-binding proteins were purified from the marine calcareous sponge Clathrina clathrus via affinity chromatography on lactose and N-acetyl glucosamine-agarose resins. Proteomic analysis of acrylamide gel separated protein subunits obtained in reducing conditions pointed out several candidates for lectins. Based on amino-acid sequence similarity, two peptides displayed homology with the jack bean lectin Concanavalin A, including a conserved domain shared by proteins in the L-type lectin superfamily. An N-acetyl glucosamine - binding protein complex, named clathrilectin, was further purified via gel filtration chromatography, bioguided with a diagnostic rabbit erythrocyte haemagglutination assay, and its activity was found to be calcium dependent. Clathrilectin, a protein complex of 3200kDa estimated by gel filtration, is composed of monomers with apparent molecular masses of 208 and 180kDa estimated on 10% SDS-PAGE. Nine internal peptides were identified using proteomic analyses, and compared to protein libraries from the demosponge Amphimedon queenslandica and a calcareous sponge Sycon sp. from the Adriatic Sea. The clathrilectin is the first lectin isolated from a calcareous sponge and displays homologies with predicted sponge proteins potentially involved in cell aggregation and interaction with bacteria.
Collapse
Affiliation(s)
- Johan Gardères
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France; Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Isabelle Domart-Coulon
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Arul Marie
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Bojan Hamer
- Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Renato Batel
- Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Marie-Lise Bourguet-Kondracki
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France.
| |
Collapse
|
5
|
Coronado I, Fernández-Martínez E, Rodríguez S, Tourneur F. Reconstructing a Carboniferous inferred coral-alcyonarian association using a biomineralogical approach. GEOBIOLOGY 2015; 13:340-356. [PMID: 25857932 DOI: 10.1111/gbi.12133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 02/20/2015] [Indexed: 06/04/2023]
Abstract
The taxonomic assignation and ecological implications of the genus Syringoalcyon Termier & Termier, 1945 have been a palaeontological problem for a long time. Carboniferous material from Morocco and Spain has been studied using a biomineralogical approach by means of petrographic microscopy, SEM, AFM, EMPA and CIP microscopy analysis. Detailed morphological, structural, chemical composition and crystallographic data enable a deeper understanding of the nature of Syringoalcyon. The coral walls and the so-called epithecal scales exhibit conspicuous differences in microstructure (lamellae and holacanthine fibres in the coral vs. single crystal in scales), nanostructure (pill-shaped vs. granule-shaped nanocrystals), composition (LMC vs. HMC) and crystallographic orientation. The results of these analyses imply that Syringoalcyon is an association between the tabulate coral Syringopora and an epibiont. They also suggest that the epibiont was an alcyonarian (a rare occurrence in the fossil record) that was attached to the syringoporoid. This work highlights the utility of the biomineralizational approaches for solving palaeontological problems, such as systematic affinities, and for advancing knowledge of the evolution of biocrystallization processes.
Collapse
Affiliation(s)
- I Coronado
- Departamento de Paleontología, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
| | - E Fernández-Martínez
- Departamento de Geografía y Geología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, Spain
| | - S Rodríguez
- Departamento de Paleontología, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
- Instituto de Geociencias (IGEO. CSIC-UCM), Ciudad Universitaria, Madrid, Spain
| | - F Tourneur
- Pierres et Marbres de Wallonie, Naninne, Belgium
| |
Collapse
|