1
|
Demin KA, Prazdnova EV, Minkina TM, Gorovtsov AV. Sulfate-reducing bacteria unearthed: ecological functions of the diverse prokaryotic group in terrestrial environments. Appl Environ Microbiol 2024; 90:e0139023. [PMID: 38551370 PMCID: PMC11022543 DOI: 10.1128/aem.01390-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024] Open
Abstract
Sulfate-reducing prokaryotes (SRPs) are essential microorganisms that play crucial roles in various ecological processes. Even though SRPs have been studied for over a century, there are still gaps in our understanding of their biology. In the past two decades, a significant amount of data on SRP ecology has been accumulated. This review aims to consolidate that information, focusing on SRPs in soils, their relation to the rare biosphere, uncultured sulfate reducers, and their interactions with other organisms in terrestrial ecosystems. SRPs in soils form part of the rare biosphere and contribute to various processes as a low-density population. The data reveal a diverse range of sulfate-reducing taxa intricately involved in terrestrial carbon and sulfur cycles. While some taxa like Desulfitobacterium and Desulfosporosinus are well studied, others are more enigmatic. For example, members of the Acidobacteriota phylum appear to hold significant importance for the terrestrial sulfur cycle. Many aspects of SRP ecology remain mysterious, including sulfate reduction in different bacterial phyla, interactions with bacteria and fungi in soils, and the existence of soil sulfate-reducing archaea. Utilizing metagenomic, metatranscriptomic, and culture-dependent approaches will help uncover the diversity, functional potential, and adaptations of SRPs in the global environment.
Collapse
|
2
|
Burkhardt C, Baruth L, Neele Meyer-Heydecke, Klippel B, Margaryan A, Paloyan A, Panosyan HH, Antranikian G. Mining thermophiles for biotechnologically relevant enzymes: evaluating the potential of European and Caucasian hot springs. Extremophiles 2023; 28:5. [PMID: 37991546 PMCID: PMC10665251 DOI: 10.1007/s00792-023-01321-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/06/2023] [Indexed: 11/23/2023]
Abstract
The development of sustainable and environmentally friendly industrial processes is becoming very crucial and demanding for the rapid implementation of innovative bio-based technologies. Natural extreme environments harbor the potential for discovering and utilizing highly specific and efficient biocatalysts that are adapted to harsh conditions. This review focuses on extremophilic microorganisms and their enzymes (extremozymes) from various hot springs, shallow marine vents, and other geothermal habitats in Europe and the Caucasus region. These hot environments have been partially investigated and analyzed for microbial diversity and enzymology. Hotspots like Iceland, Italy, and the Azores harbor unique microorganisms, including bacteria and archaea. The latest results demonstrate a great potential for the discovery of new microbial species and unique enzymes that can be explored for the development of Circular Bioeconomy.Different screening approaches have been used to discover enzymes that are active at extremes of temperature (up 120 °C), pH (0.1 to 11), high salt concentration (up to 30%) as well as activity in the presence of solvents (up to 99%). The majority of published enzymes were revealed from bacterial or archaeal isolates by traditional activity-based screening techniques. However, the latest developments in molecular biology, bioinformatics, and genomics have revolutionized life science technologies. Post-genomic era has contributed to the discovery of millions of sequences coding for a huge number of biocatalysts. Both strategies, activity- and sequence-based screening approaches, are complementary and contribute to the discovery of unique enzymes that have not been extensively utilized so far.
Collapse
Affiliation(s)
- Christin Burkhardt
- Institute of Technical Biocatalysis, Center for Biobased Solutions, Hamburg University of Technology, Am Schwarzenberg-Campus 4, 21073, Hamburg, Germany
| | - Leon Baruth
- Institute of Technical Biocatalysis, Center for Biobased Solutions, Hamburg University of Technology, Am Schwarzenberg-Campus 4, 21073, Hamburg, Germany
| | - Neele Meyer-Heydecke
- Institute of Technical Biocatalysis, Center for Biobased Solutions, Hamburg University of Technology, Am Schwarzenberg-Campus 4, 21073, Hamburg, Germany
| | - Barbara Klippel
- Institute of Technical Biocatalysis, Center for Biobased Solutions, Hamburg University of Technology, Am Schwarzenberg-Campus 4, 21073, Hamburg, Germany
| | - Armine Margaryan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
| | - Ani Paloyan
- Scientific and Production Center, "Armbiotechnology" NAS RA, 14 Gyurjyan Str. 0056, Yerevan, Armenia
| | - Hovik H Panosyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
| | - Garabed Antranikian
- Institute of Technical Biocatalysis, Center for Biobased Solutions, Hamburg University of Technology, Am Schwarzenberg-Campus 4, 21073, Hamburg, Germany.
| |
Collapse
|
3
|
Malesevic M, Stanisavljevic N, Matijasevic D, Curcic J, Tasic V, Tasic S, Kojic M. Metagenomic Analysis of Bacterial Community and Isolation of Representative Strains from Vranjska Banja Hot Spring, Serbia. MICROBIAL ECOLOGY 2023; 86:2344-2356. [PMID: 37222803 DOI: 10.1007/s00248-023-02242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
The hot spring Vranjska Banja is the hottest spring on the Balkan Peninsula with a water temperature of 63-95 °C and a pH value of 7.1, in situ. According to the physicochemical analysis, Vranjska Banja hot spring belongs to the bicarbonated and sulfated hyperthermal waters. The structures of microbial community of this geothermal spring are still largely unexplored. In order to determine and monitor the diversity of microbiota of the Vranjska Banja hot spring, a comprehensive culture-independent metagenomic analysis was conducted in parallel with a culture-dependent approach for the first time. Microbial profiling using amplicon sequencing analysis revealed the presence of phylogenetically novel taxa, ranging from species to phyla. Cultivation-based methods resulted in the isolation of 17 strains belonging to the genera Anoxybacillus, Bacillus, Geobacillus, and Hydrogenophillus. Whole-genome sequencing of five representative strains was then performed. The genomic characterization and OrthoANI analysis revealed that the Vranjska Banja hot spring harbors phylogenetically novel species of the genus Anoxybacillus, proving its uniqueness. Moreover, these isolates contain stress response genes that enable them to survive in the harsh conditions of the hot springs. The results of the in silico analysis show that most of the sequenced strains have the potential to produce thermostable enzymes (proteases, lipases, amylases, phytase, chitinase, and glucanase) and various antimicrobial molecules that can be of great importance for industrial, agricultural, and biotechnological applications. Finally, this study provides a basis for further research and understanding of the metabolic potential of these microorganisms.
Collapse
Affiliation(s)
- Milka Malesevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia.
| | - Nemanja Stanisavljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Danka Matijasevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Jovana Curcic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Vukasin Tasic
- Faculty of Informatics and Computing, Singidunum University, Belgrade, Serbia
| | - Srdjan Tasic
- The Academy of Applied Technical and Preschool Studies, Nis, Serbia
| | - Milan Kojic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| |
Collapse
|
4
|
Barbosa C, Tamayo-Leiva J, Alcorta J, Salgado O, Daniele L, Morata D, Díez B. Effects of hydrogeochemistry on the microbial ecology of terrestrial hot springs. Microbiol Spectr 2023; 11:e0024923. [PMID: 37754764 PMCID: PMC10581198 DOI: 10.1128/spectrum.00249-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/13/2023] [Indexed: 09/28/2023] Open
Abstract
Temperature, pH, and hydrochemistry of terrestrial hot springs play a critical role in shaping thermal microbial communities. However, the interactions of biotic and abiotic factors at this terrestrial-aquatic interface are still not well understood on a global scale, and the question of how underground events influence microbial communities remains open. To answer this, 11 new samples obtained from the El Tatio geothermal field were analyzed by 16S rRNA amplicon sequencing (V4 region), along with 191 samples from previous publications obtained from the Taupo Volcanic Zone, the Yellowstone Plateau Volcanic Field, and the Eastern Tibetan Plateau, with their temperature, pH, and major ion concentration. Microbial alpha diversity was lower in acid-sulfate waters, and no significant correlations were found with temperature. However, moderate correlations were observed between chemical parameters such as pH (mostly constrained to temperatures below 70°C), SO4 2- and abundances of members of the phyla Armatimonadota, Deinococcota, Chloroflexota, Campilobacterota, and Thermoplasmatota. pH and SO4 2- gradients were explained by phase separation of sulfur-rich hydrothermal fluids and oxidation of reduced sulfur in the steam phase, which were identified as key processes shaping these communities. Ordination and permutational analysis of variance showed that temperature, pH, and major element hydrochemistry explain only 24% of the microbial community structure. Therefore, most of the variance remained unexplained, suggesting that other environmental or biotic factors are also involved and highlighting the environmental complexity of the ecosystem and its great potential to test niche theory ecological associated questions. IMPORTANCE This is the first approach to investigate whether geothermal processes could have an influence on the ecology of thermal microbial communities on a global scale. In addition to temperature and pH, microbial communities are structured by sulfate concentrations, which depends on the tectono-magmatic settings (such as the depth of magmatic chambers) and the local settings (such as the availability of a confining layer separating NaCl waters from steam after phase separation) and the possibility of mixing with more diluted fluids. Comparison of microbial communities from different geothermal areas by homogeneous sequence processing showed that no significant geographic distance decay was detected on the microbial communities according to Bray-Curtis, Jaccard, unweighted, and weighted Unifrac similarity/dissimilarity indices. Instead, an ancient potential divergence in the same taxonomic groups is suggested between globally distant thermal zones.
Collapse
Affiliation(s)
- Carla Barbosa
- Department of Geology, University of Chile, Santiago, Chile
- Andean Geothermal Center of Excellence (CEGA-Fondap), University of Chile, Santiago, Chile
| | - Javier Tamayo-Leiva
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Santiago, Chile
- Center for Climate and Resilience Research (CR)2, University of Chile, Santiago, Chile
- Millennium Institute Center of Genome Regulation (CGR), Santiago, Chile
| | - Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Santiago, Chile
- Millennium Institute Center of Genome Regulation (CGR), Santiago, Chile
| | - Oscar Salgado
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Bioinformática, Facultad de Educación, Universidad Adventista de Chile, Chillán, Chile
| | - Linda Daniele
- Department of Geology, University of Chile, Santiago, Chile
- Andean Geothermal Center of Excellence (CEGA-Fondap), University of Chile, Santiago, Chile
| | - Diego Morata
- Department of Geology, University of Chile, Santiago, Chile
- Andean Geothermal Center of Excellence (CEGA-Fondap), University of Chile, Santiago, Chile
| | - Beatríz Díez
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Santiago, Chile
- Center for Climate and Resilience Research (CR)2, University of Chile, Santiago, Chile
- Millennium Institute Center of Genome Regulation (CGR), Santiago, Chile
| |
Collapse
|
5
|
Gorrasi S, Franzetti A, Brandt A, Minzlaff U, Pasqualetti M, Fenice M. Insights into the prokaryotic communities of the abyssal-hadal benthic-boundary layer of the Kuril Kamchatka Trench. ENVIRONMENTAL MICROBIOME 2023; 18:67. [PMID: 37533108 PMCID: PMC10398949 DOI: 10.1186/s40793-023-00522-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND The Kuril-Kamchatka Trench (maximum depth 9604 m), located in the NW Pacific Ocean, is among the top seven deepest hadal trenches. The work aimed to investigate the unexplored abyssal-hadal prokaryotic communities of this fascinating, but underrated environment. RESULTS As for the bacterial communities, we found that Proteobacteria (56.1-74.5%), Bacteroidetes (6.5-19.1%), and Actinobacteria (0.9-16.1%) were the most represented bacterial phyla over all samples. Thaumarchaeota (52.9-91.1%) was the most abundant phylum in the archaeal communities. The archaeal diversity was highly represented by the ammonia-oxidizing Nitrosopumilus, and the potential hydrocarbon-degrading bacteria Acinetobacter, Zhongshania, and Colwellia were the main bacterial genera. The α-diversity analysis evidenced that both prokaryotic communities were characterized by low evenness, as indicated by the high Gini index values (> 0.9). The β-diversity analysis (Redundancy Analysis) indicated that, as expected, the depth significantly affected the structure of the prokaryotic communities. The co-occurrence network revealed seven prokaryotic groups that covaried across the abyssal-hadal zone of the Kuril-Kamchatka Trench. Among them, the main group included the most abundant archaeal and bacterial OTUs (Nitrosopumilus OTU A2 and OTU A1; Acinetobacter OTU B1), which were ubiquitous across the trench. CONCLUSIONS This manuscript represents the first attempt to characterize the prokaryotic communities of the KKT abyssal-hadal zone. Our results reveal that the most abundant prokaryotes harbored by the abyssal-hadal zone of Kuril-Kamchatka Trench were chemolithotrophic archaea and heterotrophic bacteria, which did not show a distinctive pattern distribution according to depth. In particular, Acinetobacter, Zhongshania, and Colwellia (potential hydrocarbon degraders) were the main bacterial genera, and Nitrosopumilus (ammonia oxidizer) was the dominant representative of the archaeal diversity.
Collapse
Affiliation(s)
- Susanna Gorrasi
- Laboratory of Microbiology, Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy.
| | - Andrea Franzetti
- Laboratory of Microbiology, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, 20126, Italy
| | - Angelika Brandt
- Senckenberg Research Institute and Natural History Museum, 60325, Frankfurt am Main, Germany
- Institute of Ecology, Diversity and Evolution, Goethe University, 60438, Frankfurt am Main, Germany
| | - Ulrike Minzlaff
- Institute of Ecology, Diversity and Evolution, Goethe University, 60438, Frankfurt am Main, Germany
| | - Marcella Pasqualetti
- Laboratory of Ecology of Marine Fungi - CoNISMa, Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy
| | - Massimiliano Fenice
- Laboratory of Microbiology, Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy.
- Laboratory of Applied Marine Microbiology - CoNISMa, Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy.
| |
Collapse
|
6
|
Allen B, Gonzalez-Cabaleiro R, Ofiteru ID, Øvreås L, Sloan WT, Swan D, Curtis T. Diversity and metabolic energy in bacteria. FEMS Microbiol Lett 2023; 370:fnad043. [PMID: 37193662 PMCID: PMC10214464 DOI: 10.1093/femsle/fnad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/03/2023] [Accepted: 05/15/2023] [Indexed: 05/18/2023] Open
Abstract
Why are some groups of bacteria more diverse than others? We hypothesize that the metabolic energy available to a bacterial functional group (a biogeochemical group or 'guild') has a role in such a group's taxonomic diversity. We tested this hypothesis by looking at the metacommunity diversity of functional groups in multiple biomes. We observed a positive correlation between estimates of a functional group's diversity and their metabolic energy yield. Moreover, the slope of that relationship was similar in all biomes. These findings could imply the existence of a universal mechanism controlling the diversity of all functional groups in all biomes in the same way. We consider a variety of possible explanations from the classical (environmental variation) to the 'non-Darwinian' (a drift barrier effect). Unfortunately, these explanations are not mutually exclusive, and a deeper understanding of the ultimate cause(s) of bacterial diversity will require us to determine if and how the key parameters in population genetics (effective population size, mutation rate, and selective gradients) vary between functional groups and with environmental conditions: this is a difficult task.
Collapse
Affiliation(s)
- Ben Allen
- School of Engineering Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | - Irina Dana Ofiteru
- School of Engineering Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Lise Øvreås
- Department of Biological Sciences, University of Bergen, Postboks 7803 5020 Bergen, Norway
| | - William T Sloan
- Department of Civil Engineering, Glasgow University, Glasgow G12 8QQ, UK
| | - Donna Swan
- School of Engineering Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Thomas Curtis
- School of Engineering Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
7
|
DePoy AN, King GM. Distribution and diversity of anaerobic thermophiles and putative anaerobic nickel-dependent carbon monoxide-oxidizing thermophiles in mesothermal soils and sediments. Front Microbiol 2023; 13:1096186. [PMID: 36699584 PMCID: PMC9868602 DOI: 10.3389/fmicb.2022.1096186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Even though thermophiles are best known from geothermal and other heated systems, numerous studies have demonstrated that they occur ubiquitously in mesothermal and permanently cold soils and sediments. Cultivation based studies of the latter have revealed that the thermophiles within them are mostly spore-forming members of the Firmicutes. Since the geographic distribution of spores is presumably unconstrained by transport through the atmosphere, similar communities (composition and diversity) of thermophiles might be expected to emerge in mesothermal habitats after they are heated. Alternatively, thermophiles might experience environmental selection before or after heating leading to divergent communities. After demonstrating the ubiquity of anaerobic thermophiles and CO uptake in a variety of mesothermal habitats and two hot springs, we used high throughput sequencing of 16S rRNA genes to assess the composition and diversity of populations that emerged after incubation at 60°C with or without headspace CO concentrations of 25%. Anaerobic Firmicutes dominated relative abundances at most sites but anaerobic thermophilic members of the Acidobacteria and Proteobacteria were also common. Nonetheless, compositions at the amplicon sequence variant (ASV) level varied among the sites with no convergence resulting from heating or CO addition as indicated by beta diversity analyses. The distinctions among thermophilic communities paralleled patterns observed for unheated "time zero" mesothermal soils and sediments. Occupancy analyses showed that the number of ASVs occupying each of n sites decreased unimodally with increasing n; no ASV occupied all 14 sites and only one each occupied 11 and 12 sites, while 69.3% of 1873 ASVs occupied just one site. Nonetheless, considerations of distances among the sites occupied by individual ASVs along with details of their distributions indicated that taxa were not dispersal limited but rather were constrained by environmental selection. This conclusion was supported by βMNTD and βNTI analyses, which showed dispersal limitation was only a minor contributor to taxon distributions.
Collapse
|
8
|
Hogendoorn C, Pol A, de Graaf R, White PB, Mesman R, van Galen PM, van Alen TA, Cremers G, Jansen RS, Jetten MSM, Op den Camp HJM. " Candidatus Hydrogenisulfobacillus filiaventi" strain R50 gen. nov. sp. nov., a highly efficient producer of extracellular organic compounds from H 2 and CO 2. Front Microbiol 2023; 14:1151097. [PMID: 37032882 PMCID: PMC10080006 DOI: 10.3389/fmicb.2023.1151097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Production of organic molecules is largely depending on fossil fuels. A sustainable alternative would be the synthesis of these compounds from CO2 and a cheap energy source, such as H2, CH4, NH3, CO, sulfur compounds or iron(II). Volcanic and geothermal areas are rich in CO2 and reduced inorganic gasses and therefore habitats where novel chemolithoautotrophic microorganisms for the synthesis of organic compounds could be discovered. Here we describe "Candidatus Hydrogenisulfobacillus filiaventi" R50 gen. nov., sp. nov., a thermoacidophilic, autotrophic H2-oxidizing microorganism, that fixed CO2 and excreted no less than 0.54 mol organic carbon per mole fixed CO2. Extensive metabolomics and NMR analyses revealed that Val, Ala and Ile are the most dominant form of excreted organic carbon while the aromatic amino acids Tyr and Phe, and Glu and Lys were present at much lower concentrations. In addition to these proteinogenic amino acids, the excreted carbon consisted of homoserine lactone, homoserine and an unidentified amino acid. The biological role of the excretion remains uncertain. In the laboratory, we noticed the production under high growth rates (0.034 h-1, doubling time of 20 h) in combination with O2-limitation, which will most likely not occur in the natural habitat of this strain. Nevertheless, this large production of extracellular organic molecules from CO2 may open possibilities to use chemolithoautotrophic microorganisms for the sustainable production of important biomolecules.
Collapse
Affiliation(s)
- Carmen Hogendoorn
- Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands
| | - Arjan Pol
- Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands
| | - Rob de Graaf
- Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands
| | - Paul B. White
- Department of Synthetic Organic Chemistry, IMM, Radboud University, Nijmegen, Netherlands
| | - Rob Mesman
- Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands
| | - Peter M. van Galen
- Department of Systems Chemistry, IMM, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Theo A. van Alen
- Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands
| | - Geert Cremers
- Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands
| | - Robert S. Jansen
- Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands
| | - Mike S. M. Jetten
- Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands
| | - Huub J. M. Op den Camp
- Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands
- *Correspondence: Huub J. M. Op den Camp,
| |
Collapse
|
9
|
Picone N, Blom P, Hogendoorn C, Frank J, van Alen T, Pol A, Gagliano AL, Jetten MSM, D'Alessandro W, Quatrini P, Op den Camp HJM. Metagenome Assembled Genome of a Novel Verrucomicrobial Methanotroph From Pantelleria Island. Front Microbiol 2021; 12:666929. [PMID: 34093485 PMCID: PMC8170126 DOI: 10.3389/fmicb.2021.666929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/20/2021] [Indexed: 01/10/2023] Open
Abstract
Verrucomicrobial methanotrophs are a group of aerobic bacteria isolated from volcanic environments. They are acidophiles, characterized by the presence of a particulate methane monooxygenase (pMMO) and a XoxF-type methanol dehydrogenase (MDH). Metagenomic analysis of DNA extracted from the soil of Favara Grande, a geothermal area on Pantelleria Island, Italy, revealed the presence of two verrucomicrobial Metagenome Assembled Genomes (MAGs). One of these MAGs did not phylogenetically classify within any existing genus. After extensive analysis of the MAG, we propose the name of "Candidatus Methylacidithermus pantelleriae" PQ17 gen. nov. sp. nov. The MAG consisted of 2,466,655 bp, 71 contigs and 3,127 predicted coding sequences. Completeness was found at 98.6% and contamination at 1.3%. Genes encoding the pMMO and XoxF-MDH were identified. Inorganic carbon fixation might use the Calvin-Benson-Bassham cycle since all genes were identified. The serine and ribulose monophosphate pathways were incomplete. The detoxification of formaldehyde could follow the tetrahydrofolate pathway. Furthermore, "Ca. Methylacidithermus pantelleriae" might be capable of nitric oxide reduction but genes for dissimilatory nitrate reduction and nitrogen fixation were not identified. Unlike other verrucomicrobial methanotrophs, genes encoding for enzymes involved in hydrogen oxidation could not be found. In conclusion, the discovery of this new MAG expands the diversity and metabolism of verrucomicrobial methanotrophs.
Collapse
Affiliation(s)
- Nunzia Picone
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| | - Pieter Blom
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| | - Carmen Hogendoorn
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| | - Jeroen Frank
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| | - Theo van Alen
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| | - Arjan Pol
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| | - Antonina L Gagliano
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Palermo, Italy
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| | - Walter D'Alessandro
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Palermo, Italy
| | - Paola Quatrini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud University, Nijmegen, Netherlands
| |
Collapse
|
10
|
Performance Analysis and Microbial Community Evolution of In Situ Biological Biogas Upgrading with Increasing H 2/CO 2 Ratio. ACTA ACUST UNITED AC 2021; 2021:8894455. [PMID: 33628124 PMCID: PMC7889367 DOI: 10.1155/2021/8894455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/27/2020] [Accepted: 01/15/2021] [Indexed: 01/04/2023]
Abstract
The effect of the amount of hydrogen supplied for the in situ biological biogas upgrading was investigated by monitoring the process and evolution of the microbial community. Two parallel reactors, operated at 37°C for 211 days, were continuously fed with sewage sludge at a constant organic loading rate of 1.5 gCOD∙(L∙d)−1 and hydrogen (H2). The molar ratio of H2/CO2 was progressively increased from 0.5 : 1 to 7 : 1 to convert carbon dioxide (CO2) into biomethane via hydrogenotrophic methanogenesis. Changes in the biogas composition become statistically different above the stoichiometric H2/CO2 ratio (4 : 1). At a H2/CO2 ratio of 7 : 1, the methane content in the biogas reached 90%, without adversely affecting degradation of the organic matter. The possibility of selecting, adapting, and enriching the original biomass with target-oriented microorganisms able to biologically convert CO2 into methane was verified: high throughput sequencing of 16S rRNA gene revealed that hydrogenotrophic methanogens, belonging to Methanolinea and Methanobacterium genera, were dominant. Based on the outcomes of this study, further optimization and engineering of this process is feasible and needed as a means to boost energy recovery from sludge treatment.
Collapse
|
11
|
Picone N, Blom P, Wallenius AJ, Hogendoorn C, Mesman R, Cremers G, Gagliano AL, D'Alessandro W, Quatrini P, Jetten MSM, Pol A, Op den Camp HJM. Methylacidimicrobium thermophilum AP8, a Novel Methane- and Hydrogen-Oxidizing Bacterium Isolated From Volcanic Soil on Pantelleria Island, Italy. Front Microbiol 2021; 12:637762. [PMID: 33643272 PMCID: PMC7907005 DOI: 10.3389/fmicb.2021.637762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
The Favara Grande is a geothermal area located on Pantelleria Island, Italy. The area is characterized high temperatures in the top layer of the soil (60°C), low pH (3–5) and hydrothermal gas emissions mainly composed of carbon dioxide (CO2), methane (CH4), and hydrogen (H2). These geothermal features may provide a suitable niche for the growth of chemolithotrophic thermoacidophiles, including the lanthanide-dependent methanotrophs of the phylum Verrucomicrobia. In this study, we started enrichment cultures inoculated with soil of the Favara Grande at 50 and 60°C with CH4 as energy source and medium containing sufficient lanthanides at pH 3 and 5. From these cultures, a verrucomicrobial methanotroph could be isolated via serial dilution and floating filters techniques. The genome of strain AP8 was sequenced and based on phylogenetic analysis we propose to name this new species Methylacidimicrobium thermophilum AP8. The transcriptome data at μmax (0.051 ± 0.001 h−1, doubling time ~14 h) of the new strain showed a high expression of the pmoCAB2 operon encoding the membrane-bound methane monooxygenase and of the gene xoxF1, encoding the lanthanide-dependent methanol dehydrogenase. A second pmoCAB operon and xoxF2 gene were not expressed. The physiology of strain AP8 was further investigated and revealed an optimal growth in a pH range of 3–5 at 50°C, representing the first thermophilic strain of the genus Methylacidimicrobium. Moreover, strain AP8 had a KS(app) for methane of 8 ± 1 μM. Beside methane, a type 1b [NiFe] hydrogenase enabled hydrogen oxidation at oxygen concentrations up to 1%. Taken together, our results expand the knowledge on the characteristics and adaptations of verrucomicrobial methanotrophs in hydrothermal environments and add a new thermophilic strain to the genus Methylacidimicrobium.
Collapse
Affiliation(s)
- Nunzia Picone
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Pieter Blom
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Anna J Wallenius
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Carmen Hogendoorn
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Rob Mesman
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Geert Cremers
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | | | | | - Paola Quatrini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Arjan Pol
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
12
|
Hogendoorn C, Picone N, van Hout F, Vijverberg S, Poghosyan L, van Alen TA, Frank J, Pol A, Gagliano AL, Jetten MSM, D'Alessandro W, Quatrini P, Op den Camp HJM. Draft genome of a novel methanotrophic Methylobacter sp. from the volcanic soils of Pantelleria Island. Antonie van Leeuwenhoek 2021; 114:313-324. [PMID: 33566237 PMCID: PMC7902576 DOI: 10.1007/s10482-021-01525-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/22/2021] [Indexed: 11/27/2022]
Abstract
The genus Methylobacter is considered an important and often dominant group of aerobic methane-oxidizing bacteria in many oxic ecosystems, where members of this genus contribute to the reduction of CH4 emissions. Metagenomic studies of the upper oxic layers of geothermal soils of the Favara Grande, Pantelleria, Italy, revealed the presence of various methane-oxidizing bacteria, and resulted in a near complete metagenome assembled genome (MAG) of an aerobic methanotroph, which was classified as a Methylobacter species. In this study, the Methylobacter sp. B2 MAG was used to investigate its metabolic potential and phylogenetic affiliation. The MAG has a size of 4,086,539 bp, consists of 134 contigs and 3955 genes were found, of which 3902 were protein coding genes. All genes for CH4 oxidation to CO2 were detected, including pmoCAB encoding particulate methane monooxygenase (pMMO) and xoxF encoding a methanol dehydrogenase. No gene encoding a formaldehyde dehydrogenase was present and the formaldehyde to formate conversion follows the tetrahydromethanopterin (H4MPT) pathway. “Ca. Methylobacter favarea” B2 uses the Ribulose-Mono-Phosphate (RuMP) pathway for carbon fixation. Analysis of the MAG indicates that Na+/H+ antiporters and the urease system might be important in the maintenance of pH homeostasis of this strain to cope with acidic conditions. So far, thermoacidophilic Methylobacter species have not been isolated, however this study indicates that members of the genus Methylobacter can be found in distinct ecosystems and their presence is not restricted to freshwater or marine sediments.
Collapse
Affiliation(s)
- Carmen Hogendoorn
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Nunzia Picone
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Femke van Hout
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Sophie Vijverberg
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Lianna Poghosyan
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Theo A van Alen
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Jeroen Frank
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Arjan Pol
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Antonia L Gagliano
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palerma, Via U. La Malfa 153, 90146, Palermo, Italy
| | - Mike S M Jetten
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Walter D'Alessandro
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palerma, Via U. La Malfa 153, 90146, Palermo, Italy
| | - Paola Quatrini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128, Palermo, Italy
| | - Huub J M Op den Camp
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Abstract
Volcanic and geothermal environments are characterized by low pH, high temperatures, and gas emissions consisting of mainly CO2 and varied CH4, H2S, and H2 contents which allow the formation of chemolithoautotrophic microbial communities. To determine the link between the emitted gases and the microbial community composition, geochemical and metagenomic analysis were performed. Soil samples of the geothermic region Favara Grande (Pantelleria, Italy) were taken at various depths (1 to 50 cm). Analysis of the gas composition revealed that CH4 and H2 have the potential to serve as the driving forces for the microbial community. Our metagenomic analysis revealed a high relative abundance of Bacteria in the top layer (1 to 10 cm), but the relative abundance of Archaea increased with depth from 32% to 70%. In particular, a putative hydrogenotrophic methanogenic archaeon, related to Methanocella conradii, appeared to have a high relative abundance (63%) in deeper layers. A variety of [NiFe]-hydrogenase genes were detected, showing that H2 was an important electron donor for microaerobic microorganisms in the upper layers. Furthermore, the bacterial population included verrucomicrobial and proteobacterial methanotrophs, the former showing an up to 7.8 times higher relative abundance. Analysis of the metabolic potential of this microbial community showed a clear capacity to oxidize CH4 aerobically, as several genes for distinct particulate methane monooxygenases and lanthanide-dependent methanol dehydrogenases (XoxF-type) were retrieved. Analysis of the CO2 fixation pathways showed the presence of the Calvin-Benson-Bassham cycle, the Wood-Ljungdahl pathway, and the (reverse) tricarboxylic acid (TCA) cycle, the latter being the most represented carbon fixation pathway. This study indicates that the methane emissions in the Favara Grande might be a combination of geothermal activity and biological processes and further provides insights into the diversity of the microbial population thriving on CH4 and H2 IMPORTANCE The Favara Grande nature reserve on the volcanic island of Pantelleria (Italy) is known for its geothermal gas emissions and high soil temperatures. These volcanic soil ecosystems represent "hot spots" of greenhouse gas emissions. The unique community might be shaped by the hostile conditions in the ecosystem, and it is involved in the cycling of elements such as carbon, hydrogen, sulfur, and nitrogen. Our metagenome study revealed that most of the microorganisms in this extreme environment are only distantly related to cultivated bacteria. The results obtained profoundly increased the understanding of these natural hot spots of greenhouse gas production/degradation and will help to enrich and isolate the microbial key players. After isolation, it will become possible to unravel the molecular mechanisms by which they adapt to extreme (thermo/acidophilic) conditions, and this may lead to new green enzymatic catalysts and technologies for industry.
Collapse
|
14
|
Hogendoorn C, Pol A, Picone N, Cremers G, van Alen TA, Gagliano AL, Jetten MSM, D'Alessandro W, Quatrini P, Op den Camp HJM. Hydrogen and Carbon Monoxide-Utilizing Kyrpidia spormannii Species From Pantelleria Island, Italy. Front Microbiol 2020; 11:951. [PMID: 32508778 PMCID: PMC7248562 DOI: 10.3389/fmicb.2020.00951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/21/2020] [Indexed: 02/04/2023] Open
Abstract
Volcanic and geothermal areas are hot and often acidic environments that emit geothermal gasses, including H2, CO and CO2. Geothermal gasses mix with air, creating conditions where thermoacidophilic aerobic H2- and CO-oxidizing microorganisms could thrive. Here, we describe the isolation of two Kyrpidia spormannii strains, which can grow autotrophically by oxidizing H2 and CO with oxygen. These strains, FAVT5 and COOX1, were isolated from the geothermal soils of the Favara Grande on Pantelleria Island, Italy. Extended physiology studies were performed with K. spormannii FAVT5, and showed that this strain grows optimally at 55°C and pH 5.0. The highest growth rate is obtained using H2 as energy source (μmax 0.19 ± 0.02 h–1, doubling time 3.6 h). K. spormannii FAVT5 can additionally grow on a variety of organic substrates, including some alcohols, volatile fatty acids and amino acids. The genome of each strain encodes for two O2-tolerant hydrogenases belonging to [NiFe] group 2a hydrogenases and transcriptome studies using K. spormannii FAVT5 showed that both hydrogenases are expressed under H2 limiting conditions. So far no Firmicutes except K. spormannii FAVT5 have been reported to exhibit a high affinity for H2, with a Ks of 327 ± 24 nM. The genomes of each strain encode for one putative CO dehydrogenase, belonging to Form II aerobic CO dehydrogenases. The genomic potential and physiological properties of these Kyrpidia strains seem to be quite well adapted to thrive in the harsh environmental volcanic conditions.
Collapse
Affiliation(s)
- Carmen Hogendoorn
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Arjan Pol
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Nunzia Picone
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Geert Cremers
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Theo A van Alen
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | | | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | | | - Paola Quatrini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
15
|
Valeriani F, Gianfranceschi G, Romano Spica V. The microbiota as a candidate biomarker for SPA pools and SPA thermal spring stability after seismic events. ENVIRONMENT INTERNATIONAL 2020; 137:105595. [PMID: 32106051 DOI: 10.1016/j.envint.2020.105595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 05/04/2023]
Abstract
Worldwide, the location of thermal springs overlaps seismic areas, and the higher occurrence of earthquakes may impact on water stability and safety. The hydrogeological perturbations pose environmental and public health risks that can be monitored by well-established chemical, physical and biological parameters. Specific health concerns involve the exposure of the population to the medical or wellness uses of SPA thermal waters, e.g. in respiratory or hydropinic treatments as well as during rehabilitative or recreational activities in pools. Since SPA waters are characterized by their own microbiota, we analysed by 16S amplicon sequencing the dynamics of water microbial communities after the August 2017 Ischia island earthquake. For the first time, we report the impact of a seismic event on a thermal spring water, whose microbiota was deeply characterized before and immediately after the natural disaster. The biodiversity stability of the water underwent a dramatic disturbance following the earthquake, as summarized by a Shannon index moving from 1.300 during May 2016-July 2017, up to 1.600 during the first 20-70 h after the event and slightly slowing down to 1.500 after 30 days and to 1.400 after 6 months. Microbiota analysis showed a sudden reduction of the relative abundance of autochthone thermophilic species within the first 20 h and a parallel increase of other thermophilic species as well as of ectopic bacteria from soil, sediments, sea, freshwater and wastewaters. Cultivable mesophilic bacteria were observed only in the first 20 h sample (7 × 103/L), even if the presence of faecal contamination traces was detected by Real Time PCR also up to 70 h after the disaster. OTUs analysis of putative metabolic functions showed several changes between pre and post event, such as in the distribution of Sulphur metabolizing and Carbon fixation species. The restoration of the original pattern followed a slow trend, requiring over six months. The observed results confirm the impact of the earthquake on the microbiota structure of the underground thermal spring water, suggesting further perspectives for monitoring water stability and safety issues by a metagenomic approach.
Collapse
Affiliation(s)
- Federica Valeriani
- Department of Movement, Human, and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Gianluca Gianfranceschi
- Department of Movement, Human, and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Vincenzo Romano Spica
- Department of Movement, Human, and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
16
|
Marlow JJ, Colocci I, Jungbluth SP, Weber NM, Gartman A, Kallmeyer J. Mapping metabolic activity at single cell resolution in intact volcanic fumarole sediment. FEMS Microbiol Lett 2020; 367:5736014. [DOI: 10.1093/femsle/fnaa031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT
Interactions among microorganisms and their mineralogical substrates govern the structure, function and emergent properties of microbial communities. These interactions are predicated on spatial relationships, which dictate metabolite exchange and access to key substrates. To quantitatively assess links between spatial relationships and metabolic activity, this study presents a novel approach to map all organisms, the metabolically active subset and associated mineral grains, all while maintaining spatial integrity of an environmental microbiome. We applied this method at an outgassing fumarole of Vanuatu's Marum Crater, one of the largest point sources of several environmentally relevant gaseous compounds, including H2O, CO2 and SO2. With increasing distance from the sediment-air surface and from mineral grain outer boundaries, organism abundance decreased but the proportion of metabolically active organisms often increased. These protected niches may provide more stable conditions that promote consistent metabolic activity of a streamlined community. Conversely, exterior surfaces accumulate more organisms that may cover a wider range of preferred conditions, implying that only a subset of the community will be active under any particular environmental regime. More broadly, the approach presented here allows investigators to see microbial communities ‘as they really are’ and explore determinants of metabolic activity across a range of microbiomes.
Collapse
Affiliation(s)
- Jeffrey J Marlow
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, 02138, USA
| | - Isabella Colocci
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, 02138, USA
| | - Sean P Jungbluth
- United States Department of Energy, Joint Genome Institute, 2800 Mitchell Dr, Walnut Creek, California, 94598, USA
| | - Nils Moritz Weber
- GFZ German Research Centre for Geosciences, Section 3.7 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Amy Gartman
- United States Geological Survey, 2885 Mission Street Santa Cruz, CA 95060, USA
| | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Section 3.7 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| |
Collapse
|
17
|
Palma E, Espinoza Tofalos A, Daghio M, Franzetti A, Tsiota P, Cruz Viggi C, Papini MP, Aulenta F. Bioelectrochemical treatment of groundwater containing BTEX in a continuous-flow system: Substrate interactions, microbial community analysis, and impact of sulfate as a co-contaminant. N Biotechnol 2019; 53:41-48. [DOI: 10.1016/j.nbt.2019.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 06/03/2019] [Accepted: 06/08/2019] [Indexed: 11/28/2022]
|
18
|
Vibrio Proteases for Biomedical Applications: Modulating the Proteolytic Secretome of V. alginolyticus and V. parahaemolyticus for Improved Enzymes Production. Microorganisms 2019; 7:microorganisms7100387. [PMID: 31554228 PMCID: PMC6843219 DOI: 10.3390/microorganisms7100387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 01/03/2023] Open
Abstract
Proteolytic enzymes are of great interest for biotechnological purposes, and their large-scale production, as well as the discovery of strains producing new molecules, is a relevant issue. Collagenases are employed for biomedical and pharmaceutical purposes. The high specificity of collagenase-based preparations toward the substrate strongly relies on the enzyme purity. However, the overall activity may depend on the cooperation with other proteases, the presence of which may be essential for the overall enzymatic activity, but potentially harmful for cells and tissues. Vibrios produce some of the most promising bacterial proteases (including collagenases), and their exo-proteome includes several enzymes with different substrate specificities, the production and relative abundances of which strongly depend on growth conditions. We evaluated the effects of different media compositions on the proteolytic exo-proteome of Vibrio alginolyticus and its closely relative Vibrio parahaemolyticus, in order to improve the overall proteases production, as well as the yield of the desired enzymes subset. Substantial biological responses were achieved with all media, which allowed defining culture conditions for targeted improvement of selected enzyme classes, besides giving insights in possible regulatory mechanisms. In particular, we focused our efforts on collagenases production, because of the growing biotechnological interest due to their pharmaceutical/biomedical applications.
Collapse
|
19
|
Abstract
Although volcanoes represent extreme environments for life, they harbour bacterial communities. Vulcano Island (Aeolian Islands, Sicily) presents an intense fumarolic activity and widespread soil degassing, fed by variable amounts of magmatic gases (dominant at La Fossa Crater) and hydrothermal fluids (dominant at Levante Bay). The aim of this study is to analyse the microbial communities from the different environments of Vulcano Island and to evaluate their possible correlation with the composition of the gas emissions. Microbial analyses were carried out on soils and pioneer plants from both La Fossa Crater and Levante Bay. Total DNA has been extracted from all the samples and sequenced through Illumina MiSeq platform. The analysis of microbiome composition and the gases sampled in the same sites could suggest a possible correlation between the two parameters. We can suggest that the ability of different bacterial genera/species to survive in the same area might be due to the selection of particular genetic traits allowing the survival of these microorganisms. On the other side, the finding that microbial communities inhabiting different sites exhibiting different emission profiles are similar might be explained on the basis of a possible sharing of metabolic abilities related to the gas composition.
Collapse
|
20
|
Venturi S, Tassi F, Magi F, Cabassi J, Ricci A, Capecchiacci F, Caponi C, Nisi B, Vaselli O. Carbon isotopic signature of interstitial soil gases reveals the potential role of ecosystems in mitigating geogenic greenhouse gas emissions: Case studies from hydrothermal systems in Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:887-898. [PMID: 30481715 DOI: 10.1016/j.scitotenv.2018.11.293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 05/02/2023]
Abstract
Volcanic and hydrothermal areas largely contribute to the natural emission of greenhouse gases to the atmosphere, although large uncertainties in estimating their global output still remain. Nevertheless, CO2 and CH4 discharged from hydrothermal fluid reservoirs may support active soil microbial communities. Such secondary processes can control and reduce the flux of these gases to the atmosphere. In order to evaluate the effects deriving from the presence of microbial activity, chemical and carbon (in CO2 and CH4) isotopic composition of interstitial soil gases, as well as diffuse CO2 fluxes, of three hydrothermal systems from Italy were investigated, i.e. (i) Solfatara crater (Campi Flegrei), (ii) Monterotondo Marittimo (Larderello geothermal field) and (iii) Baia di Levante in Vulcano Island (Aeolian Archipelago), where soil CO2 fluxes up to 2400, 1920 and 346 g m-2 day-1 were measured, respectively. Despite the large supply of hydrothermal fluids, 13CO2 enrichments were observed in interstitial soil gases with respect to the fumarolic gas discharges, pointing to the occurrence of autotrophic CO2 fixation processes during the migration of deep-sourced fluids towards the soil-air interface. On the other hand, (i) the δ13C-CH4 values (up to ~48‰ vs. V-PDB higher than those measured at the fumarolic emissions) of the interstitial soil gases and (ii) the comparison of the CO2/CH4 ratios between soil gases and fumarolic emissions suggested that the deep-sourced CH4 was partly consumed by methanotrophic activity, as supported by isotope fractionation modeling. These findings confirmed the key role that methanotrophs play in mitigating the release of geogenic greenhouse gases from volcanic and hydrothermal environments.
Collapse
Affiliation(s)
- S Venturi
- Institute of Geosciences and Earth Resources (IGG), National Research Council of Italy (CNR), Via G. La Pira 4, 50121 Florence, Italy.
| | - F Tassi
- Institute of Geosciences and Earth Resources (IGG), National Research Council of Italy (CNR), Via G. La Pira 4, 50121 Florence, Italy; Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence, Italy.
| | - F Magi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence, Italy.
| | - J Cabassi
- Institute of Geosciences and Earth Resources (IGG), National Research Council of Italy (CNR), Via G. La Pira 4, 50121 Florence, Italy.
| | - A Ricci
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Porta S. Donato 1, 40127 Bologna, Italy.
| | - F Capecchiacci
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence, Italy.
| | - C Caponi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence, Italy.
| | - B Nisi
- Institute of Geosciences and Earth Resources (IGG), National Research Council of Italy (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy.
| | - O Vaselli
- Institute of Geosciences and Earth Resources (IGG), National Research Council of Italy (CNR), Via G. La Pira 4, 50121 Florence, Italy; Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Florence, Italy.
| |
Collapse
|
21
|
Catania V, Cappello S, Di Giorgi V, Santisi S, Di Maria R, Mazzola A, Vizzini S, Quatrini P. Microbial communities of polluted sub-surface marine sediments. MARINE POLLUTION BULLETIN 2018; 131:396-406. [PMID: 29886964 DOI: 10.1016/j.marpolbul.2018.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 03/08/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Microbial communities of coastal marine sediment play a key role in degradation of petroleum contaminants. Here the bacterial and archaeal communities of sub-surface sediments (5-10 cm) of the chronically polluted Priolo Bay (eastern coast of Sicily, Italy), contaminated mainly by n-alkanes and biodegraded/weathered oils, were characterized by cultural and molecular approaches. 16S-PCR-DGGE analysis at six stations, revealed that bacterial communities are highly divergent and display lower phylogenetic diversity than the surface sediment; sub-surface communities respond to oil supplementation in microcosms with a significant reduction in biodiversity and a shift in composition; they retain high biodegradation capacities and host hydrocarbon (HC) degraders that were isolated and identified. HC-degrading Alfa, Gamma and Epsilon proteobacteria together with Clostridia and Archaea are a common feature of sub-surface communities. These assemblages show similarities with that of subsurface petroleum reservoirs also characterized by the presence of biodegraded and weathered oils where anaerobic or microaerophilic syntrophic HC metabolism has been proposed.
Collapse
Affiliation(s)
- Valentina Catania
- Dept. of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Simone Cappello
- Institute for Coastal Marine Environment (IAMC)-CNR of Messina, Messina, Italy
| | - Vincenzo Di Giorgi
- Dept. of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Santina Santisi
- Institute for Coastal Marine Environment (IAMC)-CNR of Messina, Messina, Italy
| | - Roberta Di Maria
- Dept. of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Antonio Mazzola
- Dept. of Earth and Marine Sciences (DISTEM) University of Palermo, Palermo, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Roma, Italy
| | - Salvatrice Vizzini
- Dept. of Earth and Marine Sciences (DISTEM) University of Palermo, Palermo, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Roma, Italy
| | - Paola Quatrini
- Dept. of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| |
Collapse
|
22
|
Karwautz C, Kus G, Stöckl M, Neu TR, Lueders T. Microbial megacities fueled by methane oxidation in a mineral spring cave. ISME JOURNAL 2017; 12:87-100. [PMID: 28949325 PMCID: PMC5739006 DOI: 10.1038/ismej.2017.146] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/23/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022]
Abstract
Massive biofilms have been discovered in the cave of an iodine-rich former medicinal spring in southern Germany. The biofilms completely cover the walls and ceilings of the cave, giving rise to speculations about their metabolism. Here we report on first insights into the structure and function of the biofilm microbiota, combining geochemical, imaging and molecular analytics. Stable isotope analysis indicated that thermogenic methane emerging into the cave served as an important driver of biofilm formation. The undisturbed cavern atmosphere contained up to 3000 p.p.m. methane and was microoxic. A high abundance and diversity of aerobic methanotrophs primarily within the Methylococcales (Gammaproteobacteria) and methylotrophic Methylophilaceae (Betaproteobacteria) were found in the biofilms, along with a surprising diversity of associated heterotrophic bacteria. The highest methane oxidation potentials were measured for submerged biofilms on the cavern wall. Highly organized globular structures of the biofilm matrix were revealed by fluorescent lectin staining. We propose that the extracellular matrix served not only as an electron sink for nutrient-limited biofilm methylotrophs but potentially also as a diffusive barrier against volatilized iodine species. Possible links between carbon and iodine cycling in this peculiar habitat are discussed.
Collapse
Affiliation(s)
- Clemens Karwautz
- Institute of Groundwater Ecology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Neuherberg, Germany
| | - Günter Kus
- Bavarian Environment Agency (LfU), Department 10: Geological Survey, Hof/Saale, Germany
| | - Michael Stöckl
- Institute of Groundwater Ecology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Neuherberg, Germany
| | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Magdeburg, Germany
| | - Tillmann Lueders
- Institute of Groundwater Ecology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Neuherberg, Germany
| |
Collapse
|
23
|
Microbial Community Structure in a Serpentine-Hosted Abiotic Gas Seepage at the Chimaera Ophiolite, Turkey. Appl Environ Microbiol 2017; 83:AEM.03430-16. [PMID: 28389534 PMCID: PMC5452829 DOI: 10.1128/aem.03430-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/27/2017] [Indexed: 11/26/2022] Open
Abstract
The surface waters at the ultramafic ophiolitic outcrop in Chimaera, Turkey, are characterized by high pH values and high metal levels due to the percolation of fluids through areas of active serpentinization. We describe the influence of the liquid chemistry, mineralogy, and H2 and CH4 levels on the bacterial community structure in a semidry, exposed, ultramafic environment. The bacterial and archaeal community structures were monitored using Illumina sequencing targeting the 16S rRNA gene. At all sampling points, four phyla, Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteria, accounted for the majority of taxa. Members of the Chloroflexi phylum dominated low-diversity sites, whereas Proteobacteria dominated high-diversity sites. Methane, nitrogen, iron, and hydrogen oxidizers were detected as well as archaea and metal-resistant bacteria. IMPORTANCE Our study is a comprehensive microbial investigation of the Chimaera ophiolite. DNA has been extracted from 16 sites in the area and has been studied from microbial and geochemical points of view. We describe a microbial community structure that is dependent on terrestrial, serpentinization-driven abiotic H2, which is poorly studied due to the rarity of these environments on Earth.
Collapse
|
24
|
Yabe S, Sakai Y, Abe K, Yokota A. Diversity of Ktedonobacteria with Actinomycetes-Like Morphology in Terrestrial Environments. Microbes Environ 2017; 32:61-70. [PMID: 28321007 PMCID: PMC5371077 DOI: 10.1264/jsme2.me16144] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacteria with an actinomycetes-like morphology have recently been discovered, and the class Ktedonobacteria was created for these bacteria in the phylum Chloroflexi. They may prove to be a valuable resource with the potential to produce unprecedented secondary metabolites. However, our understanding of their diversity, richness, habitat, and ecological significance is very limited. We herein developed a 16S rRNA gene-targeted, Ktedonobacteria-specific primer and analyzed ktedonobacterial amplicons. We investigated abundance, diversity, and community structure in forest and garden soils, sand, bark, geothermal sediment, and compost. Forest soils had the highest diversity among the samples tested (1181-2934 operational taxonomic units [OTUs]; Chao 1 estimate, 2503-5613; Shannon index, 4.21-6.42). A phylogenetic analysis of representative OTUs revealed at least eight groups within unclassified Ktedonobacterales, expanding the known diversity of this order. Ktedonobacterial communities markedly varied among our samples. The common mesic environments (soil, sand, and bark) were dominated by diverse phylotypes within the eight groups. In contrast, compost and geothermal sediment samples were dominated by known ktedonobacterial families (Thermosporotrichaceae and Thermogemmatisporaceae, respectively). The relative abundance of Ktedonobacteria in the communities, based on universal primers, was ≤0.8%, but was 12.9% in the geothermal sediment. These results suggest that unknown diverse Ktedonobacteria inhabit common environments including forests, gardens, and sand at low abundances, as well as extreme environments such as geothermal areas.
Collapse
Affiliation(s)
- Shuhei Yabe
- Graduate School of Agricultural Sciences, Tohoku University
| | | | | | | |
Collapse
|
25
|
Cappelletti M, Ghezzi D, Zannoni D, Capaccioni B, Fedi S. Diversity of Methane-Oxidizing Bacteria in Soils from "Hot Lands of Medolla" (Italy) Featured by Anomalous High-Temperatures and Biogenic CO 2 Emission. Microbes Environ 2016; 31:369-377. [PMID: 27645100 PMCID: PMC5158108 DOI: 10.1264/jsme2.me16087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/13/2016] [Indexed: 11/24/2022] Open
Abstract
"Terre Calde di Medolla" (TCM) (literally, "Hot Lands of Medolla") refers to a farming area in Italy with anomalously high temperatures and diffuse emissions of biogenic CO2, which has been linked to CH4 oxidation processes from a depth of 0.7 m to the surface. We herein assessed the composition of the total bacterial community and diversity of methane-oxidizing bacteria (MOB) in soil samples collected at a depth at which the peak temperature was detected (0.6 m). Cultivation-independent methods were used, such as: i) a clone library analysis of the 16S rRNA gene and pmoA (coding for the α-subunit of the particulate methane monooxygenase) gene, and ii) Terminal Restriction Fragment Length Polymorphism (T-RFLP) fingerprinting. The 16S rRNA gene analysis assessed the predominance of Actinobacteria, Acidobacteria, Proteobacteria, and Bacillus in TCM samples collected at a depth of 0.6 m along with the presence of methanotrophs (Methylocaldum and Methylobacter) and methylotrophs (Methylobacillus). The phylogenetic analysis of pmoA sequences showed the presence of MOB affiliated with Methylomonas, Methylocystis, Methylococcus, and Methylocaldum in addition to as yet uncultivated and uncharacterized methanotrophs. Jaccard's analysis of T-RFLP profiles at different ground depths revealed a similar MOB composition in soil samples at depths of 0.6 m and 0.7 m, while this similarity was weaker between these samples and those taken at a depth of 2.5 m, in which the genus Methylocaldum was absent. These results correlate the anomalously high temperatures of the farming area of "Terre Calde di Medolla" with the presence of microbial methane-oxidizing bacteria.
Collapse
Affiliation(s)
- Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of BolognaVia Irnerio 42, 40126, BolognaItaly
| | - Daniele Ghezzi
- Department of Pharmacy and Biotechnology, University of BolognaVia Irnerio 42, 40126, BolognaItaly
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of BolognaVia Irnerio 42, 40126, BolognaItaly
| | - Bruno Capaccioni
- Department of Biological, Geological and Environmental Sciences, University of BolognaPiazza di Porta S. Donato 1, 40126, BolognaItaly
| | - Stefano Fedi
- Department of Pharmacy and Biotechnology, University of BolognaVia Irnerio 42, 40126, BolognaItaly
| |
Collapse
|
26
|
Ferrentino R, Langone M, Gandolfi I, Bertolini V, Franzetti A, Andreottola G. Shift in microbial community structure of anaerobic side-stream reactor in response to changes to anaerobic solid retention time and sludge interchange ratio. BIORESOURCE TECHNOLOGY 2016; 221:588-597. [PMID: 27689352 DOI: 10.1016/j.biortech.2016.09.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/14/2016] [Accepted: 09/17/2016] [Indexed: 06/06/2023]
Abstract
A laboratory scale nutrient removal activated sludge system coupled with an anaerobic side-stream reactor was operated for 300 days treating real urban wastewater. A significant decrease in sludge production was obtained increasing the anaerobic solid retention time (SRTASSR) and decreasing the sludge interchange ratio (IR). In this study, the microbial community structure was analyzed and compared with the sludge reduction performance. Quantitative polymerase chain reaction analyses encoding 16 ribosomal RNA and functional genes revealed a wide diversity of phylogenetic groups in each experimental period, resulting from long solids retention time and recirculation of sludge under aerobic, anoxic and anaerobic conditions. However, decreasing SRTASSR from 10 to 2.5d and increasing IR from 27 to 100%, an increasing selection of both fermenting bacteria able to release extracellular polymeric substances and hydrolyze organic matter and slow growing bacteria involved in nutrient removal were detected and linked to the sludge reduction mechanisms.
Collapse
Affiliation(s)
- Roberta Ferrentino
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy.
| | - Michela Langone
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Isabella Gandolfi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
| | - Valentina Bertolini
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
| | - Gianni Andreottola
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| |
Collapse
|
27
|
Degli Esposti M, Geiger O, Martinez-Romero E. Recent Developments on Bacterial Evolution into Eukaryotic Cells. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|