1
|
David GM, Moreira D, Reboul G, Annenkova NV, Galindo LJ, Bertolino P, López-Archilla AI, Jardillier L, López-García P. Environmental drivers of plankton protist communities along latitudinal and vertical gradients in the oldest and deepest freshwater lake. Environ Microbiol 2020; 23:1436-1451. [PMID: 33270368 DOI: 10.1111/1462-2920.15346] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 01/04/2023]
Abstract
Identifying which abiotic and biotic factors determine microbial community assembly is crucial to understand ecological processes and predict how communities will respond to environmental change. While global surveys aim at addressing this question in the world's oceans, equivalent studies in large freshwater systems are virtually lacking. Being the oldest, deepest and most voluminous freshwater lake on Earth, Lake Baikal offers a unique opportunity to test the effect of horizontal versus vertical gradients in community structure. Here, we characterized the structure of planktonic microbial eukaryotic communities (0.2-30 μm cell size) along a North-South latitudinal gradient (~600 km) from samples collected in coastal and pelagic waters and from surface to the deepest zones (5-1400 m) using an 18S rRNA gene metabarcoding approach. Our results show complex and diverse protist communities dominated by alveolates (ciliates and dinoflagellates), ochrophytes and holomycotan lineages, with cryptophytes, haptophytes, katablepharids and telonemids in moderate abundance and many low-frequency lineages, including several typical marine members, such as diplonemids, syndinians and radiolarians. Depth had a strong significant effect on protist community stratification. By contrast, the effect of the latitudinal gradient was marginal and no significant difference was observed between coastal and surface open water communities. Co-occurrence network analyses showed that epipelagic communities were significantly more interconnected than communities from the dark water column and suggest specific biotic interactions between autotrophic, heterotrophic and parasitic lineages that influence protist community structure. Since climate change is rapidly affecting Siberia and Lake Baikal, our comprehensive protist survey constitutes a useful reference to monitor ongoing community shifts.
Collapse
Affiliation(s)
- Gwendoline M David
- Ecologie Systématique Evolution, Centre National de la Recherche Scientifique - CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - David Moreira
- Ecologie Systématique Evolution, Centre National de la Recherche Scientifique - CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Guillaume Reboul
- Ecologie Systématique Evolution, Centre National de la Recherche Scientifique - CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Nataliia V Annenkova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Luis J Galindo
- Ecologie Systématique Evolution, Centre National de la Recherche Scientifique - CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Paola Bertolino
- Ecologie Systématique Evolution, Centre National de la Recherche Scientifique - CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | | | - Ludwig Jardillier
- Ecologie Systématique Evolution, Centre National de la Recherche Scientifique - CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Purificación López-García
- Ecologie Systématique Evolution, Centre National de la Recherche Scientifique - CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| |
Collapse
|
2
|
Abstract
Lake Baikal (Siberia) is the world’s oldest and deepest lake and a UNESCO World Heritage Site. Containing an exceptionally high level of biodiversity and endemism, in addition to a fifth of global freshwater not stored in ice sheets, the lake has been cited by UNESCO as the “most outstanding example of a freshwater ecosystem.” Using geochemical and climate data, we demonstrate that rates of nutrient supply to the lake’s photic zone have risen to unprecedented levels in the last 2,000 y through the 20th and 21st centuries. Linked to increases in wind speed enhancing deep ventilation, we show that these changes are capable of altering lake primary production and community dynamics, including the balance between endemic and cosmopolitan species. Lake Baikal, lying in a rift zone in southeastern Siberia, is the world's oldest, deepest, and most voluminous lake that began to form over 30 million years ago. Cited as the “most outstanding example of a freshwater ecosystem” and designated a World Heritage Site in 1996 due to its high level of endemicity, the lake and its ecosystem have become increasingly threatened by both climate change and anthropogenic disturbance. Here, we present a record of nutrient cycling in the lake, derived from the silicon isotope composition of diatoms, which dominate aquatic primary productivity. Using historical records from the region, we assess the extent to which natural and anthropogenic factors have altered biogeochemical cycling in the lake over the last 2,000 y. We show that rates of nutrient supply from deep waters to the photic zone have dramatically increased since the mid-19th century in response to changing wind dynamics, reduced ice cover, and their associated impact on limnological processes in the lake. With stressors linked to untreated sewage and catchment development also now impacting the near-shore region of Lake Baikal, the resilience of the lake’s highly endemic ecosystem to ongoing and future disturbance is increasingly uncertain.
Collapse
|
3
|
Hao Q, Yang S, Song Z, Ran X, Yu C, Chen C, Van Zwieten L, Quine TA, Liu H, Wang Z, Wang H. Holocene carbon accumulation in lakes of the current east Asian monsoonal margin: Implications under a changing climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139723. [PMID: 32554037 DOI: 10.1016/j.scitotenv.2020.139723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/28/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Carbon (C) present in lake sediments is an important global sink for CO2; however, an in-depth understanding of the impact of climate variability and the associated changes in vegetation on sediment C dynamics is still lacking. A total of 13 lakes were studied to quantify the influence of climate and vegetation on the reconstructed Holocene C accumulation rate (CAR) in lake sediments of the modern East Asian monsoonal margin. The corresponding paleoclimate information was assessed, including the temperature (30-90°N in the Northern Hemisphere) and precipitation (indicated by the δ18O of the Sanbao, Dongge, and Hulu caves). The Holocene vegetation conditions were inferred by pollen records, including arboreal pollen/non-arboreal pollen and pollen percentages. The results showed that the peak CAR occurred during the mid-Holocene, coinciding with the strongest period of the East Asian summer monsoon and expansion of forests. Lakes in the temperate steppe (TS) regions had a mean CAR of 13.41 ± 0.88 g C m-2 yr-1, which was significantly greater than the CARs of temperate desert (TD) and highland meadow/steppe (HMS; 6.76 ± 0.29 and 7.39 ± 0.73 g C m-2 yr-1, respectively). The major influencing factor for the TS sub-region was vegetation dynamics, especially the proportion of arboreal vegetation, while temperature and vegetation coverage were more important for the HMS. These findings indicate that C accumulation in lake sediments is linked with climate and vegetation changes over long timescales; however, there was notable spatial heterogeneity in the CARs, such as opposing temporal changes and different major influencing factors among the three sub-regions during the mid-Holocene. Aridification and forest loss would decrease C storage. However, prediction of C accumulation remains difficult because of the spatial heterogeneity in CARs and the interaction between the CAR and various factors under future climate change conditions.
Collapse
Affiliation(s)
- Qian Hao
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China; School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Shilei Yang
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China; School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China; School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Xiangbin Ran
- Research Center for Marine Ecology, First Institute of Oceanography, State Oceanic Administration, Qingdao, Shandong 266061, China
| | - Changxun Yu
- Department of Biology and Environmental Science, Linnaeus University, SE-39182 Kalmar, Sweden
| | - Chunmei Chen
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China; School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Lukas Van Zwieten
- New South Wales Department of Primary Industries, 1243 Bruxner Highway, Wollongbar, NSW 2477, Australia
| | - Timothy A Quine
- Geography, Amory Building, University of Exeter, Rennes Drive, Exeter EX4 4RJ, United Kingdom
| | - Hongyan Liu
- College of Urban and Environmental Sciences, Peking University, Peking 100871, China
| | - Zhengang Wang
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
4
|
Soil evaporation and organic matter turnover in the Sub-Taiga and Forest-Steppe of southwest Siberia. Sci Rep 2018; 8:10904. [PMID: 30026597 PMCID: PMC6053405 DOI: 10.1038/s41598-018-28977-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/25/2018] [Indexed: 11/12/2022] Open
Abstract
Southwest Siberia encompasses the forest-steppe and sub-taiga climatic zones and has historically been utilized for agriculture. Coinciding with predicted changes in climate for the region is the pressure of agricultural development; however, a characterization of the soil water and carbon dynamics is lacking. We assessed current soil water properties and soil organic carbon turnover in forests and grasslands for two sites that span the forest steppe and sub-taiga bioclimatic zones. Soil evaporation was 0.62 ± 0.17 mm d−1 (mean ± standard error) in grasslands and 0.45 ± 0.08 mm d−1 in the forests of the forest-steppe site. Evaporation at the sub-taiga site was 1.80 ± 1.70 mm d−1 in grasslands and 0.96 ± 0.05 mm d−1 in forest plots. Evaporation was significantly greater at the sub-taiga site than the forest-steppe site. The density of fine roots explained the soil water isotopic patterns between vegetation types and sites. We found soil organic matter turnover to be three times faster in the sub-taiga site than in the forest-steppe site. Our results show that while climate factors, in particular snow levels, between the two sites are drivers for water and carbon cycles, site level hydrology, soil characteristics, and vegetation directly interact to influence the water and carbon dynamics.
Collapse
|