1
|
Son D, Waldman B, Song U. Effects of land-use types and the exotic species, Hypochaeris radicata, on plant diversity in human-transformed landscapes of the biosphere reserve, Jeju Island, Korea. PLANT DIVERSITY 2023; 45:685-693. [PMID: 38197002 PMCID: PMC10772109 DOI: 10.1016/j.pld.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2024]
Abstract
Land-use and plant invasion influence biodiversity. Understanding the effects of land-use types and invasive plants on the ecosystem is crucial for better management and the development of strategic plans for increasing biodiversity in Jeju Island, Korea, a designated Biosphere Reserve by the United Nations Education, Scientific, and Cultural Organization. The effect of the most dominant invasive exotic species, Hypochaeris radicata, on the four land-use types of Jeju Island was investigated. Plant composition, soil characteristics, and plant diversity among four land-use types (cropland, green space, neglected land, and residential) were compared. Among the land-use types, croplands had the most diverse plant composition and the highest richness in exotic and native plant species. Croplands, such as tangerine orchards, which are widely distributed throughout Jeju Island, showed the highest plant diversity because of medium intensity disturbance caused by weed removal. The relative cover of H. radicata did not differ between land-use types. However, H. radicata invasion was negatively related with plant species richness, making this invasive species a threat to the biodiversity of native herbs present in land-use areas. H. radicata adapts to areas with a broad range of soil properties and a variety of land-use types. Therefore, it is crucial to monitor land-use types and patterns of plant invasion to guide the implementation of consistent management and conservation strategies for maintaining ecosystem integrity of the transformed habitat in Jeju Island.
Collapse
Affiliation(s)
- Deokjoo Son
- College of Education Department of Science Education, Dankook University, Gyeonggi-do, 16890, Republic of Korea
| | - Bruce Waldman
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Uhram Song
- Department of Biology, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
2
|
Tang J, Swaisgood RR, Owen MA, Zhao X, Wei W, Hong M, Zhou H, Zhang Z. Assessing the effectiveness of protected areas for panda conservation under future climate and land use change scenarios. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118319. [PMID: 37290306 DOI: 10.1016/j.jenvman.2023.118319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
While the relatively stable land use and land cover (LULC) patterns is an important feature of protected areas (PAs), the influence of this feature on future species distribution and the effectiveness of the PAs has rarely been explored. Here, we assessed the role of land use patterns within PAs on the projected range of the giant panda (Ailuropoda melanoleuca) by comparing projections inside and outside of PAs for four model configurations: (1) only climate covariates, (2) climate and dynamic land use covariates, (3) climate and static land use covariates and (4) climate and hybrid dynamic-static land use covariates. Our objectives were twofold: to understand the role of protected status on projected panda habitat suitability and evaluate the relative efficacy of different climate modeling approaches. The climate and land use change scenarios used in the models include two shared socio-economic pathways (SSPs) scenarios: SSP126 [an optimistic scenario] and SSP585 [a pessimistic scenario]. We found that models including land-use covariates performed significantly better than climate-only models and that these projected more suitable habitat than climate-only models. Static land-use models projected more suitable habitat than both the dynamic and hybrid models under SSP126, while these models did not differ under SSP585. China's panda reserve system was projected to effectively maintain suitable habitat inside PAs. Panda dispersal ability also significantly impacted outcomes, with most models assuming unlimited dispersal forecasting range expansion and models assuming zero dispersal consistently forecasting range contraction. Our findings highlight that policies targeting improved land-use practices should be an effective means for offsetting some of the negative effects of climate change on pandas. As the effectiveness of PAs is projected to be maintained, we recommend the judicious management and expansion of the PA system to ensure the resilience of panda populations into the future.
Collapse
Affiliation(s)
- Junfeng Tang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China; Institute of Ecology, China West Normal University, Nanchong, China; Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, China.
| | - Ronald R Swaisgood
- Conservation Science and Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, CA, USA.
| | - Megan A Owen
- Conservation Science and Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, CA, USA.
| | - Xuzhe Zhao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China; Institute of Ecology, China West Normal University, Nanchong, China; Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, China.
| | - Wei Wei
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China; Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, China.
| | - Mingsheng Hong
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China; Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, China.
| | - Hong Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China; Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, China.
| | - Zejun Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China; Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, China.
| |
Collapse
|
3
|
Reiter K, Plutzar C, Moser D, Semenchuk P, Erb K, Essl F, Gattringer A, Haberl H, Krausmann F, Lenzner B, Wessely J, Matej S, Pouteau R, Dullinger S. Human appropriation of net primary production as driver of change in landscape-scale vertebrate richness. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2023; 32:855-866. [PMID: 38504954 PMCID: PMC10946509 DOI: 10.1111/geb.13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 03/21/2024]
Abstract
Aim Land use is the most pervasive driver of biodiversity loss. Predicting its impact on species richness (SR) is often based on indicators of habitat loss. However, the degradation of habitats, especially through land-use intensification, also affects species. Here, we evaluate whether an integrative metric of land-use intensity, the human appropriation of net primary production, is correlated with the decline of SR in used landscapes across the globe. Location Global. Time period Present. Major taxa studied Birds, mammals and amphibians. Methods Based on species range maps (spatial resolution: 20 km × 20 km) and an area-of-habitat approach, we calibrated a "species-energy model" by correlating the SR of three groups of vertebrates with net primary production and biogeographical covariables in "wilderness" areas (i.e., those where available energy is assumed to be still at pristine levels). We used this model to project the difference between pristine SR and the SR corresponding to the energy remaining in used landscapes (i.e., SR loss expected owing to human energy extraction outside wilderness areas). We validated the projected species loss by comparison with the realized and impending loss reconstructed from habitat conversion and documented by national Red Lists. Results Species-energy models largely explained landscape-scale variation of mapped SR in wilderness areas (adjusted R 2-values: 0.79-0.93). Model-based projections of SR loss were lower, on average, than reconstructed and documented ones, but the spatial patterns were correlated significantly, with stronger correlation in mammals (Pearson's r = 0.68) than in amphibians (r = 0.60) and birds (r = 0.57). Main conclusions Our results suggest that the human appropriation of net primary production is a useful indicator of heterotrophic species loss in used landscapes, hence we recommend its inclusion in models based on species-area relationships to improve predictions of land-use-driven biodiversity loss.
Collapse
Affiliation(s)
- Karina Reiter
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Advancing Systems AnalysisInternational Institute for Applied Systems Analysis (IIASA)LaxenburgAustria
| | - Christoph Plutzar
- Institute of Social Ecology (SEC)University of Natural Resources and Life Science (BOKU)ViennaAustria
| | - Dietmar Moser
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Philipp Semenchuk
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Karl‐Heinz Erb
- Institute of Social Ecology (SEC)University of Natural Resources and Life Science (BOKU)ViennaAustria
| | - Franz Essl
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Andreas Gattringer
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Helmut Haberl
- Institute of Social Ecology (SEC)University of Natural Resources and Life Science (BOKU)ViennaAustria
| | - Fridolin Krausmann
- Institute of Social Ecology (SEC)University of Natural Resources and Life Science (BOKU)ViennaAustria
| | - Bernd Lenzner
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Johannes Wessely
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Sarah Matej
- Institute of Social Ecology (SEC)University of Natural Resources and Life Science (BOKU)ViennaAustria
| | - Robin Pouteau
- French National Research Institute for Sustainable Development (IRD), AMAP Lab, France & RéunionMarseilleFrance
| | - Stefan Dullinger
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| |
Collapse
|
4
|
Egger C, Mayer A, Bertsch-Hörmann B, Plutzar C, Schindler S, Tramberend P, Haberl H, Gaube V. Effects of extreme events on land-use-related decisions of farmers in Eastern Austria: the role of learning. AGRONOMY FOR SUSTAINABLE DEVELOPMENT 2023; 43:39. [PMID: 37200584 PMCID: PMC10176289 DOI: 10.1007/s13593-023-00890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/07/2023] [Indexed: 05/20/2023]
Abstract
European farm households will face increasingly challenging conditions in the coming decades due to climate change, as the frequency and severity of extreme weather events rise. This study assesses the complex interrelations between external framework conditions such as climate change or adjustments in the agricultural price and subsidy schemes with farmers' decision-making. As social aspects remain understudied drivers for agricultural decisions, we also consider value-based characteristics of farmers as internal factors relevant for decision-making. We integrate individual learning as response to extreme weather events into an agent-based model that simulates farmers' decision-making. We applied the model to a region in Eastern Austria that already experiences water scarcity and increasing drought risk from climate change and simulated three future scenarios to compare the effects of changes in socio-economic and climatic conditions. In a cross-comparison, we then investigated how farmers can navigate these changes through individual adaptation. The agricultural trajectories project a decline of active farms between -27 and -37% accompanied by a reduction of agricultural area between -20 and -30% until 2053. The results show that regardless of the scenario conditions, adaptation through learning moderates the decline in the number of active farms and farmland compared to scenarios without adaptive learning. However, adaptation increases the workload of farmers. This highlights the need for labor support for farms. Supplementary Information The online version contains supplementary material available at 10.1007/s13593-023-00890-z.
Collapse
Affiliation(s)
- Claudine Egger
- Department of Economics and Social Sciences, Institute of Social Ecology, University of Natural Resources and Life Sciences, Schottenfeldgasse 29, 1070 Vienna, Austria
| | - Andreas Mayer
- Department of Economics and Social Sciences, Institute of Social Ecology, University of Natural Resources and Life Sciences, Schottenfeldgasse 29, 1070 Vienna, Austria
| | - Bastian Bertsch-Hörmann
- Department of Economics and Social Sciences, Institute of Social Ecology, University of Natural Resources and Life Sciences, Schottenfeldgasse 29, 1070 Vienna, Austria
| | - Christoph Plutzar
- Environment Agency Austria, Spittelauer Lände 5, 1090 Vienna, Austria
| | - Stefan Schindler
- Environment Agency Austria, Spittelauer Lände 5, 1090 Vienna, Austria
- Community Ecology and Conservation, Faculty of Environmental Sciences, Community Ecology and Conservation Research Group, Kamýcká 129, CZ-165 00 Prague 6, Czech Republic
| | - Peter Tramberend
- Environment Agency Austria, Spittelauer Lände 5, 1090 Vienna, Austria
| | - Helmut Haberl
- Department of Economics and Social Sciences, Institute of Social Ecology, University of Natural Resources and Life Sciences, Schottenfeldgasse 29, 1070 Vienna, Austria
| | - Veronika Gaube
- Department of Economics and Social Sciences, Institute of Social Ecology, University of Natural Resources and Life Sciences, Schottenfeldgasse 29, 1070 Vienna, Austria
| |
Collapse
|
5
|
Qian Y, Dong Z, Yan Y, Tang L. Ecological risk assessment models for simulating impacts of land use and landscape pattern on ecosystem services. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155218. [PMID: 35421487 DOI: 10.1016/j.scitotenv.2022.155218] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Rapid urbanization involves the expansion of construction land, which changes the land use and landscape pattern in watersheds. Moreover, it degrades ecosystem services and habitat quality, thus creating adverse ecological impacts such as the diffusion of non-point source (NPS) pollution. Therefore, it is urgent to investigate the adverse effects and potential ecological risks caused by variations in land use due to territory development and urbanization. Houxi Basin is a typical Chinese southeastern coastal watershed in the process of urbanization, and the ecological risk from 2011 to 2019 is here assessed. Based on ecosystem vulnerability and the interference with the ecosystem, we evaluated the risk of degradation of habitat services provided by terrestrial ecosystems due to changes in landscape patterns. In addition, the export coefficient model is employed to build an exposure-response relationship between land use and NPS pollution to investigate the risk of degrading water-purification services provided by aquatic ecosystems. The results show that the risks of degrading habitat-provision services increase slightly but for water-purification services increases rapidly. Alternatively, the integrated optimization scenario of key areas for 2030 reduces the risk of pollution diffusion and the landscape risk by 4.27% and 10.25%, respectively, compared with the business-as-usual scenario. In summary, reasonable planning of land-use types and spatial layout is conducive to reducing ecological risks. Other conclusions can be drawn: the combined replacement of forest and grassland more effectively inhibits pollution diffusion than does replacing only forest or only grassland. Optimizing areas with high land-use impact coefficients inhibits pollution diffusion more effectively than does optimizing areas with high export coefficients. Lastly, instead of increasing the area of green land, adjusting its spatial layout proves to be more effective in lowering the ecological risk to water-purification and habitat-provision services.
Collapse
Affiliation(s)
- Yao Qian
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zheng Dong
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yan Yan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lina Tang
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
6
|
Characteristics of Plant Community and Its Relationship with Groundwater Depth of the Desert Riparian Zone in the Lower Reaches of the Ugan River, Northwest China. WATER 2022. [DOI: 10.3390/w14101663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The vegetation in the desert riparian zone represents a critical barrier in the maintenance of the ecosystem’s balance. However, in recent years, the vegetation degradation of the riparian zone has seriously hindered economic development and ecological environment conservation. Based on a field investigation and literature, the mechanisms of vegetation degradation in the lower reaches of the Ugan River are discussed in this study through the analysis of plant coverage, diversity, substitution rate, distribution pattern, grey correlation analysis, and the relationship with groundwater depth. The results showed that the vegetation coverage in this region is relatively low when the water depth exceeds 4 m. Furthermore, the Shannon–Wiener index, the Simpson index, and the Pielou index all decreased with increases in water depth. Woody plants are the main species maintaining the ecological balance of the region with an aggregation distribution pattern. The degradation of vegetation is the result of the lack of water sources and the intense water consumption caused by human activities (especially agricultural). To promote ecological balance and vegetation restoration, the relative optimal water depth range should be maintained within 2 to 5 m as well as proper control of human activities. In addition, the degraded vegetation can gradually be restored using point and surface (i.e., flowering in the center and spreading to the surrounding areas). The results can provide a scientific basis for vegetation restoration and ecological conservation in the lower reaches of China’s Ugan River.
Collapse
|
7
|
Bertsch-Hoermann B, Egger C, Gaube V, Gingrich S. Agroforestry trade-offs between biomass provision and aboveground carbon sequestration in the alpine Eisenwurzen region, Austria. REGIONAL ENVIRONMENTAL CHANGE 2021; 21:77. [PMID: 34720739 PMCID: PMC8550091 DOI: 10.1007/s10113-021-01794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Mountain agroecosystems deliver essential ecosystem services to society but are prone to climate change as well as socio-economic pressures, making multi-functional land systems increasingly central to sustainable mountain land use policy. Agroforestry, the combination of woody vegetation with crops and/or livestock, is expected to simultaneously increase provisioning and regulating ecosystem services, but knowledge gaps concerning trade-offs exist especially in temperate industrialized and alpine regions. Here, we quantify the aboveground carbon (C) dynamics of a hypothetical agroforestry implementation in the Austrian long-term socio-ecological research region Eisenwurzen from 2020 to 2050. We develop three land use scenarios to differentiate conventional agriculture from an immediate and a gradual agroforestry implementation, integrate data from three distinct models (Yield-SAFE, SECLAND, MIAMI), and advance the socio-ecological indicator framework Human Appropriation of Net Primary Production (HANPP) to assess trade-offs between biomass provision and carbon sequestration. Results indicate that agroforestry strongly decreases HANPP because of a reduction in biomass harvest by up to - 47% and a simultaneous increase in actual net primary production by up to 31%, with a large amount of carbon sequestered in perennial biomass by up to 3.4 t C ha-1 yr-1. This shows that a hypothetical transition to agroforestry in the Eisenwurzen relieves the agroecosystem from human-induced pressure but results in significant trade-offs between biomass provision and carbon sequestration. We thus conclude that while harvest losses inhibit large-scale implementation in intensively used agricultural regions, agroforestry constitutes a valuable addition to sustainable land use policy, in particular when affecting extensive pastures and meadows in alpine landscapes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10113-021-01794-y.
Collapse
Affiliation(s)
- Bastian Bertsch-Hoermann
- Institute of Social Ecology (SEC), Department of Economics and Social Sciences (WiSo), University of Natural Resources & Life Sciences, Vienna (BOKU), Schottenfeldgasse 29, 1070 Vienna, Austria
| | - Claudine Egger
- Institute of Social Ecology (SEC), Department of Economics and Social Sciences (WiSo), University of Natural Resources & Life Sciences, Vienna (BOKU), Schottenfeldgasse 29, 1070 Vienna, Austria
| | - Veronika Gaube
- Institute of Social Ecology (SEC), Department of Economics and Social Sciences (WiSo), University of Natural Resources & Life Sciences, Vienna (BOKU), Schottenfeldgasse 29, 1070 Vienna, Austria
| | - Simone Gingrich
- Institute of Social Ecology (SEC), Department of Economics and Social Sciences (WiSo), University of Natural Resources & Life Sciences, Vienna (BOKU), Schottenfeldgasse 29, 1070 Vienna, Austria
| |
Collapse
|
8
|
Consistent population declines but idiosyncratic range shifts in Alpine orchids under global change. Nat Commun 2020; 11:5835. [PMID: 33203870 PMCID: PMC7672077 DOI: 10.1038/s41467-020-19680-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/21/2020] [Indexed: 11/08/2022] Open
Abstract
Mountains are plant biodiversity hotspots considered particularly vulnerable to multiple environmental changes. Here, we quantify population changes and range-shift dynamics along elevational gradients over the last three decades for c. two-thirds of the orchid species of the European Alps. Local extinctions were more likely for small populations, after habitat alteration, and predominated at the rear edge of species’ ranges. Except for the most thermophilic species and wetland specialists, population density decreased over time. Declines were more pronounced for rear-edge populations, possibly due to multiple pressures such as climate warming, habitat alteration, and mismatched ecological interactions. Besides these demographic trends, different species exhibited idiosyncratic range shifts with more than 50% of the species lagging behind climate warming. Our study highlights the importance of long-term monitoring of populations and range distributions at fine spatial resolution to be able to fully understand the consequences of global change for orchids. Many mountain species are threatened by climate change and habitat loss. Here, the authors investigate population declines and range shifts of orchids in an alpine region in NE Italy over 28 years. For most species, population size decreased, while range shifts were idiosyncratic with over half of the species lagging behind climate change.
Collapse
|
9
|
De Kort H, Baguette M, Lenoir J, Stevens VM. Toward reliable habitat suitability and accessibility models in an era of multiple environmental stressors. Ecol Evol 2020; 10:10937-10952. [PMID: 33144939 PMCID: PMC7593202 DOI: 10.1002/ece3.6753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022] Open
Abstract
Global biodiversity declines, largely driven by climate and land-use changes, urge the development of transparent guidelines for effective conservation strategies. Species distribution modeling (SDM) is a widely used approach for predicting potential shifts in species distributions, which can in turn support ecological conservation where environmental change is expected to impact population and community dynamics. Improvements in SDM accuracy through incorporating intra- and interspecific processes have boosted the SDM field forward, but simultaneously urge harmonizing the vast array of SDM approaches into an overarching, widely adoptable, and scientifically justified SDM framework. In this review, we first discuss how climate warming and land-use change interact to govern population dynamics and species' distributions, depending on species' dispersal and evolutionary abilities. We particularly emphasize that both land-use and climate change can reduce the accessibility to suitable habitat for many species, rendering the ability of species to colonize new habitat and to exchange genetic variation a crucial yet poorly implemented component of SDM. We then unite existing methodological SDM practices that aim to increase model accuracy through accounting for multiple global change stressors, dispersal, or evolution, while shifting our focus to model feasibility. We finally propose a roadmap harmonizing model accuracy and feasibility, applicable to both common and rare species, particularly those with poor dispersal abilities. This roadmap (a) paves the way for an overarching SDM framework allowing comparison and synthesis of different SDM studies and (b) could advance SDM to a level that allows systematic integration of SDM outcomes into effective conservation plans.
Collapse
Affiliation(s)
- Hanne De Kort
- Plant Conservation and Population BiologyBiology DepartmentUniversity of LeuvenLeuvenBelgium
| | - Michel Baguette
- Station d'Ecologie Théorique et Expérimentale (UMR 5321 SETE)National Center for Scientific Research (CNRS)Université Toulouse III – Paul SabatierMoulisFrance
- Institut de Systématique, Evolution, Biodiversité (UMR 7205)Muséum National d’Histoire NaturelleParisFrance
| | - Jonathan Lenoir
- UR “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSANUMR 7058 CNRS‐UPJV)Université de Picardie Jules VerneAmiens Cedex 1France
| | - Virginie M. Stevens
- Station d'Ecologie Théorique et Expérimentale (UMR 5321 SETE)National Center for Scientific Research (CNRS)Université Toulouse III – Paul SabatierMoulisFrance
| |
Collapse
|
10
|
Hülber K, Kuttner M, Moser D, Rabitsch W, Schindler S, Wessely J, Gattringer A, Essl F, Dullinger S. Habitat availability disproportionally amplifies climate change risks for lowland compared to alpine species. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|