1
|
Feng WL, Yang JL, Xu LG, Zhang GL. The spatial variations and driving factors of C, N, P stoichiometric characteristics of plant and soil in the terrestrial ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175543. [PMID: 39153619 DOI: 10.1016/j.scitotenv.2024.175543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Carbon(C), nitrogen(N), and phosphorus(P) are crucial elements in the element cycling in the terrestrial ecosystems. In the past decades, the spatial patterns and driving mechanisms of plant and soil ecological stoichiometry have been hot topics in ecological geography. So far, many studies at different spatial and ecological scales have been conducted, but systematic review has not been reported to summarize the research status. In this paper, we tried to fill this gap by reviewing both the spatial variations and driving factors of C, N, P stoichiometric characteristics of plant and soil at regional to large scale. Additionally, we synthesized researches on the relationships between plant and soil C, N and P stoichiometric characteristics. At the global scale, plant C, N, P stoichiometric characteristics exhibited some trends along latitude and temperature gradient. Plant taxonomic classification was the main factor controlling the spatial variations of plant C, N and P stoichiometric characteristics. Climate factor and soil properties showed varying impacts on the spatial variations of plant C, N, P stoichiometric characteristics across different spatial scales. Soil C, N, P stoichiometric characteristics also varied along climate gradient at large scale. Their spatial variations resulted from the combined effects of climate, topography, soil properties, and vegetation characteristics at regional scale. The spatial pattern of soil C, N, P stoichiometric characteristics and the driving effects from environmental factors could be notably different among different ecosystems and vegetation types. Plant C:N:P was obviously higher than that of soil, and there existed a positive correlation between plant and soil C:N:P. Their trends along longitude and latitude were similar, but this correlation varied significantly among different vegetation types. Finally, based on the issues identified in this paper, we highlighted eight potential research themes for the future studies.
Collapse
Affiliation(s)
- Wen-Lan Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jin-Ling Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Gang Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Gan-Lin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
2
|
Zhang S, Xia Y, Chen X, Zhang Z, Zhang D, Li S, Qin Y, Chu Y, Wang Y, Wang F. Divergent contributions of microbes and plants to soil organic carbon in the drawdown area of a large reservoir: Impacts of periodic flooding and drying. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122949. [PMID: 39418708 DOI: 10.1016/j.jenvman.2024.122949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
The distribution patterns and accumulation mechanisms of plant and microbial residues, along with their potential contributions to soil organic carbon (SOC), remain subjects of considerable debate, particularly within drawdown areas affected by reservoir operation. In this study, surface soil samples (0-10 cm) were collected from three different elevations within the drawdown area of the Three Gorges Reservoir. Amino sugars and lignin phenols served as biomarkers for microbial residues and plant-derived materials, respectively. The results revealed that with increasing duration of flooding, the content of amino sugars increased from 0.26 mg g-1 to 0.64 mg g-1, whereas the content of lignin phenols decreased from 204.09 mg kg-1 to 37.93 mg kg-1. Moreover, as the duration of flooding increased, the contribution of microbial necromass carbon (MNC) to SOC rose from 29% to 47%, while the contribution of plant-derived carbon to SOC gradually declined. Plants biomass and iron minerals influenced the accumulation of lignin phenols, whereas amino sugars were affected by plants biomass, microbial biomass carbon and nitrogen, and clay minerals. The periodic flooding and drying events induced alterations in carbon inputs and environmental characteristics within the drawdown area, resulting in fluctuations in the contributions of plants and MNC to SOC in this region. The findings of this study highlight the critical role played by both plant- and microbial-derived carbon in the retention and turnover of SOC within the terrestrial-aquatic transition zone.
Collapse
Affiliation(s)
- Shengman Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai, 200092, China
| | - Yue Xia
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xueping Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ziyuan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Dong Zhang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Shanze Li
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Yong Qin
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Yongsheng Chu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yuchun Wang
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Fushun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
3
|
Ju W, Sardans J, Bing H, Wang J, Ma D, Cui Y, Duan C, Li X, Fan Q, Peñuelas J, Fang L. Diversified Vegetation Cover Alleviates Microbial Resource Limitations within Soil Aggregates in Tailings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18744-18755. [PMID: 39389918 DOI: 10.1021/acs.est.4c06081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Resource demand by soil microorganisms critically influences microbial metabolism and then influences ecosystem resilience and multifunctionality. The ecological remediation of abandoned tailings is a topic of broad interest, yet our understanding of microbial metabolic status in restored soils, particularly at the aggregate scale, remains limited. This study investigated microbial resources within soil aggregates from revegetated tailings and applied a vector model of ecoenzymatic stoichiometry to examine how different vegetation patterns (grassland, forest, or bare land control) impact microbial resource limitation. Five-year vegetation restoration significantly elevated carbon (C) and nitrogen (N) concentrations and their stoichiometric ratios in soil aggregates (approximately 2-fold), although these increases were not translated to in the microbial biomass and its stoichiometry. The activities of C- and phosphorus (P)-acquiring extracellular enzymes in these aggregates increased substantially postvegetation, with the most pronounced escalation in macroaggregates (>0.25 mm). The vector model results indicated soil microbial metabolism was colimited by C and P, most acutely in microaggregates (<0.25 mm). This colimitation was exacerbated by monotypic vegetation cover but mitigated under diversified vegetation cover. Soil nutrient stoichiometric ratios in vegetation restoration controlled microbial resource limitation, overshadowing the impact of heavy metals. Our findings underscore that optimizing resource allocation within soil aggregates through strategic revegetation can enhance microbial metabolism in tailings, which advocates for the implementation of diverse vegetation covers as a viable strategy to improve the ecological development of degraded landscapes.
Collapse
Affiliation(s)
- Wenliang Ju
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia 08193, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia 08193, Spain
| | - Haijian Bing
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Jie Wang
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Dengke Ma
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yongxing Cui
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany
| | - Chengjiao Duan
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Xiankun Li
- Department of Physical Geography, Stockholm University, Stockholm 106 91, Sweden
| | - Qiaohui Fan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia 08193, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia 08193, Spain
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
4
|
Zimmerman AE, Graham EB, McDermott J, Hofmockel KS. Estimating the Importance of Viral Contributions to Soil Carbon Dynamics. GLOBAL CHANGE BIOLOGY 2024; 30:e17524. [PMID: 39450620 DOI: 10.1111/gcb.17524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/26/2024]
Abstract
Biogeochemical models for predicting carbon dynamics increasingly include microbial processes, reflecting the importance of microorganisms in regulating the movement of carbon between soils and the atmosphere. Soil viruses can redirect carbon among various chemical pools, indicating a need for quantification and development soil carbon models that explicitly represent viral dynamics. In this opinion, we derive a global estimate of carbon potentially released from microbial biomass by viral infections in soils and synthesize a quantitative soil carbon budget from existing literature that explicitly includes viral impacts. We then adapt known mechanisms by which viruses influence carbon cycles in marine ecosystems into a soil-explicit framework. Finally, we explore the diversity of virus-host interactions during infection and conceptualize how infection mode may impact soil carbon fate. Our synthesis highlights key knowledge gaps hindering the incorporation of viruses into soil carbon cycling research and generates specific hypotheses to test in the pursuit of better quantifying microbial dynamics that explain ecosystem-scale carbon fluxes. The importance of identifying critical drivers behind soil carbon dynamics, including these elusive but likely pervasive viral mechanisms of carbon redistribution, becomes more pressing with climate change.
Collapse
Affiliation(s)
- Amy E Zimmerman
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, Washington, USA
| | - Emily B Graham
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Jason McDermott
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, Washington, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, Washington, USA
- Department of Agronomy, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
5
|
Lin Q, Zhu J, Wang Q, Zhang Q, Yu G. Patterns and drivers of atmospheric nitrogen deposition retention in global forests. GLOBAL CHANGE BIOLOGY 2024; 30:e17410. [PMID: 38978457 DOI: 10.1111/gcb.17410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
Forests are the largest carbon sink in terrestrial ecosystems, and the impact of nitrogen (N) deposition on this carbon sink depends on the fate of external N inputs. However, the patterns and driving factors of N retention in different forest compartments remain elusive. In this study, we synthesized 408 observations from global forest 15N tracer experiments to reveal the variation and underlying mechanisms of 15N retention in plants and soils. The results showed that the average total ecosystem 15N retention in global forests was 63.04 ± 1.23%, with the soil pool being the main N sink (45.76 ± 1.29%). Plants absorbed 17.28 ± 0.83% of 15N, with more allocated to leaves (5.83 ± 0.63%) and roots (5.84 ± 0.44%). In subtropical and tropical forests, 15N was mainly absorbed by plants and mineral soils, while the organic soil layer in temperate forests retained more 15N. Additionally, forests retained moreN 15 H 4 + $$ {}^{15}\mathrm{N}{\mathrm{H}}_4^{+} $$ thanN 15 O 3 - $$ {}^{15}\mathrm{N}{\mathrm{O}}_3^{-} $$ , primarily due to the stronger capacity of the organic soil layer to retainN 15 H 4 + $$ {}^{15}\mathrm{N}{\mathrm{H}}_4^{+} $$ . The mechanisms of 15N retention varied among ecosystem compartments, with total ecosystem 15N retention affected by N deposition. Plant 15N retention was influenced by vegetative and microbial nutrient demands, while soil 15N retention was regulated by climate factors and soil nutrient supply. Overall, this study emphasizes the importance of climate and nutrient supply and demand in regulating forest N retention and provides data to further explore the impacts of N deposition on forest carbon sequestration.
Collapse
Affiliation(s)
- Quanhong Lin
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jianxing Zhu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Qiufeng Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qiongyu Zhang
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Li Y, Hou F, Sun L, Lan J, Han Z, Li T, Wang Y, Zhao Z. Ecological effect of microplastics on soil microbe-driven carbon circulation and greenhouse gas emission: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121429. [PMID: 38870791 DOI: 10.1016/j.jenvman.2024.121429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/09/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Soil organic carbon (SOC) pool, the largest part of terrestrial ecosystem, controls global terrestrial carbon balance and consequently presented carbon cycle-climate feedback in climate projections. Microplastics, (MPs, <5 mm) as common pollutants in soil ecosystems, have an obvious impact on soil-borne carbon circulation by affecting soil microbial processes, which play a central role in regulating SOC conversion. In this review, we initially presented the sources, properties and ecological risks of MPs in soil ecosystem, and then the differentiated effects of MPs on the component of SOC, including dissolved organic carbon, soil microbial biomass carbon and easily oxidized organic carbon varying with the types and concentrations of MPs, the soil types, etc. As research turns into a broader perspective, greenhouse gas emissions dominated by the mineralization of SOC coming into view since it can be significantly affected by MPs and is closely associated with soil microbial respiration. The pathways of MPs impacting soil microbes-driven carbon conversion include changing microbial community structure and composition, the functional enzyme's activity and the abundance and expression of functional genes. However, numerous uncertainties still exist regarding the microbial mechanisms in the deeper biochemical process. More comprehensive studies are necessary to explore the affected footprint and provide guidance for finding the evaluation criterion of MPs affecting climate change.
Collapse
Affiliation(s)
- Yaru Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Fangwei Hou
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, 266071, China
| | - Lulu Sun
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jing Lan
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhanghua Han
- Shandong Provincial Key Laboratory of Optics and Photonic Devices, Center of Light Manipulation and Applications, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| | - Tongtong Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yiming Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
7
|
Du Z, Zhou L, Thakur MP, Zhou G, Fu Y, Li N, Liu R, He Y, Chen H, Li J, Zhou H, Li M, Lu M, Zhou X. Mycorrhizal associations relate to stable convergence in plant-microbial competition for nitrogen absorption under high nitrogen conditions. GLOBAL CHANGE BIOLOGY 2024; 30:e17338. [PMID: 38822535 DOI: 10.1111/gcb.17338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 06/03/2024]
Abstract
Nitrogen (N) immobilization (Nim, including microbial N assimilation) and plant N uptake (PNU) are the two most important pathways of N retention in soils. The ratio of Nim to PNU (hereafter Nim:PNU ratio) generally reflects the degree of N limitation for plant growth in terrestrial ecosystems. However, the key factors driving the pattern of Nim:PNU ratio across global ecosystems remain unclear. Here, using a global data set of 1018 observations from 184 studies, we examined the relative importance of mycorrhizal associations, climate, plant, and soil properties on the Nim:PNU ratio across terrestrial ecosystems. Our results show that mycorrhizal fungi type (arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi) in combination with soil inorganic N mainly explain the global variation in the Nim:PNU ratio in terrestrial ecosystems. In AM fungi-associated ecosystems, the relationship between Nim and PNU displays a weaker negative correlation (r = -.06, p < .001), whereas there is a stronger positive correlation (r = .25, p < .001) in EM fungi-associated ecosystems. Our meta-analysis thus suggests that the AM-associated plants display a weak interaction with soil microorganisms for N absorption, while EM-associated plants cooperate with soil microorganisms. Furthermore, we find that the Nim:PNU ratio for both AM- and EM-associated ecosystems gradually converge around a stable value (13.8 ± 0.5 for AM- and 12.1 ± 1.2 for EM-associated ecosystems) under high soil inorganic N conditions. Our findings highlight the dependence of plant-microbial interaction for N absorption on both plant mycorrhizal association and soil inorganic N, with the stable convergence of the Nim:PNU ratio under high soil N conditions.
Collapse
Affiliation(s)
- Zhenggang Du
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Lingyan Zhou
- Shanghai Engineering Research Center of Sustainable Plant Innovation, Shanghai Botanical Garden, Shanghai, China
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Madhav P Thakur
- Institute of Ecology and Evolution and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Guiyao Zhou
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Yuling Fu
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Nan Li
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Ruiqiang Liu
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Yanghui He
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Hongyang Chen
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Jie Li
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Huimin Zhou
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ming Li
- School of Life Sciences, Fudan University, Shanghai, China
| | - Meng Lu
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Xuhui Zhou
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
8
|
Guo Z, Zhang S, Zhang L, Xiang Y, Wu J. A meta-analysis reveals increases in soil organic carbon following the restoration and recovery of croplands in Southwest China. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2944. [PMID: 38379442 DOI: 10.1002/eap.2944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/16/2023] [Indexed: 02/22/2024]
Abstract
In China, the Grain for Green Program (GGP) is an ambitious project to convert croplands into natural vegetation, but exactly how changes in vegetation translate into changes in soil organic carbon remains less clear. Here we conducted a meta-analysis using 734 observations to explore the effects of land recovery on soil organic carbon and nutrients in four provinces in Southwest China. Following GGP, the soil organic carbon content (SOCc) and soil organic carbon stock (SOCs) increased by 33.73% and 22.39%, respectively, compared with the surrounding croplands. Similarly, soil nitrogen increased, while phosphorus decreased. Outcomes were heterogeneous, but depended on variations in soil and environmental characteristics. Both the regional land use and cover change indicated by the landscape type transfer matrix and net primary production from 2000 to 2020 further confirmed that the GGP promoted the forest area and regional mean net primary production. Our findings suggest that the GGP could enhance soil and vegetation carbon sequestration in Southwest China and help to develop a carbon-neutral strategy.
Collapse
Affiliation(s)
- Zihao Guo
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Shuting Zhang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Lichen Zhang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Yangzhou Xiang
- School of Geography and Resources, Guizhou Education University, Guiyang, China
| | - Jianping Wu
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| |
Collapse
|
9
|
Wang S, Du Y, Liu S, Pan J, Wu F, Wang Y, Wang Y, Li H, Dong Y, Wang Z, Liu Z, Wang G, Xu Z. Response of C:N:P stoichiometry to long-term drainage of peatlands: Evidence from plant, soil, and enzyme. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170688. [PMID: 38320702 DOI: 10.1016/j.scitotenv.2024.170688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Drought induced by climate warming and human activities regulates carbon (C) cycling of peatlands by changing plant community composition and soil properties. Estimating the responses of peatlands C cycling to environmental changes requires further study of C: nitrogen (N): phosphorus (P) stoichiometric ratios of soil, plants, and enzyme activities. However, systematic studies on the stoichiometry of above-ground and below-ground ecosystems of peatlands post drainage remain scarce. This study compared stoichimetric ratios of plant and soil and stoichimetric ratios of enzyme activities with different functions in two different parts of a minerotrophic peatland, a natural undisturbed part and a part that had been drained for almost 50 years, in Northern China. For the shrub plants, the average C:N:P ratios of leaf in natural and drained peatland were 448:17:1 and 393:15:1, respectively. This indicated that the growth rate of shrub plants is higher in the drained peatland than in the natural peatland, which makes P element more concentrated in the photosynthetic site. However, from the perspective of the dominant plant, the mean C:N:P ratio of Carex leaf was 650:25:1 in the natural peatland, but was 1028:50:1 for Dasiphora fruticosa in drained peatland. This indicated that the intensification of P-limitation of plant growth after drainage. Soil C:N:P ratios of above water table depth (AWT) were 238:15:1 and 277:12:1, but were 383:17:1 and 404:19:1 for below water table depth (BWT) in the natural and the drained peatland, respectively. Soil C:P ratios were greater than the threshold elemental ratio of C:P (174:1), but the soil C:N ratios were less than the threshold elemental ratio of C:N (23:1), which suggested that P was the most limiting nutrient of soil. The soil microbial activities were co-limited by C&P in Baijianghe peatlands. However, the microbial metabolic P limitation was intensified, but the C limitation was weakened for the above water table depth soil after long-term drainage. There are connection between plant-microbe P limitation in peatlands. The P limitation of microbial metabolism was significant positively correlated with soil C:N but negatively with soil moisture. The increase in the lignocelluloses index suggested considerable decomposition of soil organic matter after peatland drainage. These results of stoichiometric ratios from above- to below ground could provide scientific base for the C cycling of peatland undergone climate change.
Collapse
Affiliation(s)
- Shengzhong Wang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Yaoyao Du
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Shasha Liu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Junxiao Pan
- Earth Critical Zone and Flux Research Station of Xing'an Mountains (Xing'an CZO), Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Fan Wu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Yingzhuo Wang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Yuting Wang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Hongkai Li
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Yanmin Dong
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Zucheng Wang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Ziping Liu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Guodong Wang
- Northeast Institute of Geography and Agroecology, Chiese Academy of Sciences, Changhchun 130102, China
| | - Zhiwei Xu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
10
|
Qiang W, Gunina A, Kuzyakov Y, Liu Q, Pang X. Decoupled response of microbial taxa and functions to nutrients: The role of stoichiometry in plantations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120574. [PMID: 38520862 DOI: 10.1016/j.jenvman.2024.120574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
The resource quantity and elemental stoichiometry play pivotal roles in shaping belowground biodiversity. However, a significant knowledge gap remains regarding the influence of different plant communities established through monoculture plantations on soil fungi and bacteria's taxonomic and functional dynamics. This study aimed to elucidate the mechanisms underlying the regulation and adaptation of microbial communities at the taxonomic and functional levels in response to communities formed over 34 years through monoculture plantations of coniferous species (Japanese larch, Armand pine, and Chinese pine), deciduous forest species (Katsura), and natural shrubland species (Asian hazel and Liaotung oak) in the temperate climate. The taxonomic and functional classifications of fungi and bacteria were examined for the mineral topsoil (0-10 cm) using MiSeq-sequencing and annotation tools of microorganisms (FAPROTAX and Funguild). Soil bacterial (6.52 ± 0.15) and fungal (4.46 ± 0.12) OTUs' diversity and richness (5.83*103±100 and 1.12*103±46.4, respectively) were higher in the Katsura plantation compared to Armand pine and Chinese pine. This difference was attributed to low soil DOC/OP (24) and DON/OP (11) ratios in the Katsura, indicating that phosphorus availability increased microbial community diversity. The Chinese pine plantation exhibited low functional diversity (3.34 ± 0.04) and richness (45.2 ± 0.41) in bacterial and fungal communities (diversity 3.16 ± 0.15 and richness 56.8 ± 3.13), which could be attributed to the high C/N ratio (25) of litter. These findings suggested that ecological stoichiometry, such as of enzyme, litter C/N, soil DOC/DOP, and DON/DOP ratios, was a sign of the decoupling of soil microorganisms at the genetic and functional levels to land restoration by plantations. It was found that the stoichiometric ratios of plant biomass served as indicators of microbial functions, whereas the stoichiometric ratios of available nutrients in soil regulated microbial genetic diversity. Therefore, nutrient stoichiometry could serve as a strong predictor of microbial diversity and composition during forest restoration.
Collapse
Affiliation(s)
- Wei Qiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Environmental Chemistry, University of Kassel, Witzenhausen, Germany
| | - Anna Gunina
- Department of Environmental Chemistry, University of Kassel, Witzenhausen, Germany; Tyumen State University, 625003, Tyumen, Russia; Peoples Friendship University of Russia (RUDN) University, 117198, Moscow, Russia
| | - Yakov Kuzyakov
- Peoples Friendship University of Russia (RUDN) University, 117198, Moscow, Russia; Institute of Environmental Sciences, Kazan Federal University, 420049, Kazan, Russia; Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Göttingen, Germany
| | - Qinghua Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, 610041, China
| | - Xueyong Pang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, 610041, China.
| |
Collapse
|
11
|
Cui H, He C, Zheng W, Jiang Z, Yang J. Effects of nitrogen addition on rhizosphere priming: The role of stoichiometric imbalance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169731. [PMID: 38163589 DOI: 10.1016/j.scitotenv.2023.169731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Nitrogen (N) input has a significant impact on the availability of carbon (C), nitrogen (N), and phosphorus (P) in the rhizosphere, leading to an imbalanced stoichiometry in microbial demands. This imbalance can result in energy or nutrient limitations, which, in turn, affect C dynamics during plant growth. However, the precise influence of N addition on the C:N:P imbalance ratio and its subsequent effects on rhizosphere priming effects (RPEs) remain unclear. To address this gap, we conducted a 75-day microcosm experiment, varying N addition rates (0, 150, 300 kg N ha-1), to examine how microbes regulate RPE by adapting to stoichiometry and maintaining homeostasis in response to N addition, using the 13C natural method. Our result showed that N input induced a stoichiometric imbalance in C:N:P, leading to P or C limitation for microbes during plant growth. Microbes responded by adjusting enzymatic stoichiometry and functional taxa to preserve homeostasis, thereby modifying the threshold element ratios (TERs) to cope with the C:N:P imbalance. Microbes adapted to the stoichiometric imbalance by reducing TER, which was attributed to a reduction in carbon use efficiency. Consequently, we observed higher RPE under P limitation, whereas the opposite trend was observed under C or N limitation. These results offer novel insights into the microbial regulation of RPE variation under different soil nutrient conditions and contribute to a better understanding of soil C dynamics.
Collapse
Affiliation(s)
- Hao Cui
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chao He
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weiwei Zheng
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhenhui Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China.
| | - Jingping Yang
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
12
|
Song W, Li J, Li X, Xu D, Min X. Effects of land reclamation on soil organic carbon and its components in reclaimed coal mining subsidence areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168523. [PMID: 37967629 DOI: 10.1016/j.scitotenv.2023.168523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
The accumulation of soil organic carbon (SOC) is crucial for the development and ecosystem function restoration of reclaimed mine soils (RMSs). To optimize reclamation management practices, this study aims to explore the factors and underlying mechanisms influencing the recovery of SOC and its components in RMSs from a systemic perspective using complex network theory (CNT). This study focused on coal mining subsidence areas in the eastern mining regions of China, comparing reclaimed cultivated land with surrounding non-subsided cultivated land. Soil samples were collected at depths of 0-20 cm, 20-40 cm, and 40-60 cm, and 25 soil indicators were measured. CNT was applied to explore the intricate relationships between soil indicators and to identify the key factors and underlying mechanisms influencing SOC and its components in RMSs. The results revealed that the compaction-induced soil structural damage during the reclamation process led to a chain reaction, resulting in increased soil bulk density (11.92 % to 15.03 %), finer soil particles (5.00 % to 9.88 % more clay and silt), and enhanced SOC mineralization (SOC decreased by 10.70 % to 15.62 % with a lower C/N ratio by 2.30 % to 28.55 %). Microbial activity also decreased, with a 6.25 % to 13.16 % drop in MBC and a 0.91 % to 27.68 % decrease in enzyme activity. The utilization of active SOC fractions by more adaptable bacterial communities was crucial within this chain reaction process. The intermediate role of soil structure in the RMS ecosystem, particularly in carbon cycling, becomes more prominent. RMSs exhibited heightened sensitivity to soil structure changes, with the response of microorganisms and enzymes to soil structure changes being pivotal. In the carbon cycling process of RMSs, microbial-driven enzyme activity in response to soil structure was more critical during SOC transformation, while the role of physical-chemical protection and microbial inhibition mediated by iron‑aluminum oxides became more pronounced in stabilizing SOC.
Collapse
Affiliation(s)
- Wen Song
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, China; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Taian 271018, China
| | - Junying Li
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, China; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Taian 271018, China
| | - Xinju Li
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, China; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Taian 271018, China
| | - Dongyun Xu
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, China; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Taian 271018, China
| | - Xiangyu Min
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, China; National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Taian 271018, China.
| |
Collapse
|
13
|
Liu B, Fan X, Meng D, Liu Z, Gao D, Chang Q, Bai E. Ectomycorrhizal trees rely on nitrogen resorption less than arbuscular mycorrhizal trees globally. Ecol Lett 2024; 27:e14346. [PMID: 38009408 DOI: 10.1111/ele.14346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/28/2023]
Abstract
Nitrogen (N) resorption is an important pathway of N conservation, contributing to an important proportion of plant N requirement. However, whether the ratio of N resorption to N requirement may be affected by environmental factors, mycorrhizal types or atmospheric CO2 concentration remains unclear. Here, we conducted a meta-analysis on the impacts of environmental factors and mycorrhizal types on this ratio. We found this ratio in ectomycorrhizal (EM) trees decreased with mean annual precipitation, mean annual temperature, soil total N content and atmospheric CO2 concentration and was significantly lower than that in arbuscular mycorrhizal (AM) trees. An in situ 15 N tracing experiment further confirmed that AM trees have a stronger reliance on N resorption than EM trees. Our study suggests that AM and EM trees potentially have different strategies for alleviation of progressive N limitation, highlighting the necessity of incorporating plant mycorrhizal types into Earth System Models.
Collapse
Affiliation(s)
- Bai Liu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education; School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Xianlei Fan
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education; School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Di Meng
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education; School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Ziping Liu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education; School of Geographical Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| | - Decai Gao
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education; School of Geographical Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| | - Qing Chang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education; School of Geographical Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| | - Edith Bai
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education; School of Geographical Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| |
Collapse
|
14
|
Tan M, Bian Z, Dong J, Hao M, Qu J. Comparing the variation and influencing factors of CO 2 emission from subsidence waterbodies under different restoration modes in coal mining area. ENVIRONMENTAL RESEARCH 2023; 237:116936. [PMID: 37648185 DOI: 10.1016/j.envres.2023.116936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
Subsidence waterbodies play an important role in carbon cycle in coal mining area. However, little effort has been made to explore the carbon dioxide (CO2) release characteristics and influencing factors in subsidence waterbodies, especially under different restoration modes. Here, we measured CO2 release fluxes (F(CO2)) across Anguo wetland (AW), louts pond (LP), fishpond (FP), fishery-floating photovoltaic wetland (FFPV), floating photovoltaic wetland (FPV) in coal mining subsidence area, with unrestored subsidence waterbodies (SW) and unaffected normal Dasha river (DR) as the control area. We sampled each waterbody and tested which physical, chemical, and biological characteristics of water and sediment related to variability in CO2. The results indicated that F(CO2) exhibited the following patterns: FFPV > FPV > FP > SW > DR > LP > AW. Trophic lake index (TLI) and microbial biomass carbon content (MBC) in sediment had a positive impact on F(CO2). The dominant archaea Euryarchaeota and Thaumarchaeota, and dominant bacteria Proteobacteria promoted F(CO2). This study can help more accurately quantify CO2 emissions and guide CO2 future emission reduction and subsidence waterbodies estoration.
Collapse
Affiliation(s)
- Min Tan
- School of Public Policy and Management, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zhengfu Bian
- School of Public Policy and Management, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Jihong Dong
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Ming Hao
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Junfeng Qu
- Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou, 221008, China; Xuzhou Institute of Ecological Civilization Construction, Xuzhou, 221008, China
| |
Collapse
|
15
|
Raza T, Qadir MF, Khan KS, Eash NS, Yousuf M, Chatterjee S, Manzoor R, Rehman SU, Oetting JN. Unrevealing the potential of microbes in decomposition of organic matter and release of carbon in the ecosystem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118529. [PMID: 37418912 DOI: 10.1016/j.jenvman.2023.118529] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 07/09/2023]
Abstract
Organic matter decomposition is a biochemical process with consequences affecting climate change and ecosystem productivity. Once decomposition begins, C is lost as CO2 or sequestered into more recalcitrant carbon difficult to further degradation. As microbial respiration releases carbon dioxide into the atmosphere, microbes act as gatekeepers in the whole process. Microbial activities were found to be the second largest CO2 emission source in the environment after human activities (industrialization), and research investigations suggest that this may have affected climate change over the past few decades. It is crucial to note that microbes are major contributors in the whole C cycle (decomposition, transformation, and stabilization). Therefore, imbalances in the C cycle might be causing changes in the entire carbon content of the ecosystem. The significance of microbes, especially soil bacteria in the terrestrial carbon cycle requires more attention. This review focuses on the factors that affect microorganism behavior during the breakdown of organic materials. The key factors affecting the microbial degradation processes are the quality of the input material, nitrogen, temperature, and moisture content. In this review, we suggest that to address global climate change and its effects on agricultural systems and vice versa, there is a need to double-up on efforts and conduct new research studies to further evaluate the potential of microbial communities to reduce their contribution to terrestrial carbon emission.
Collapse
Affiliation(s)
- Taqi Raza
- The Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, USA.
| | - Muhammad Farhan Qadir
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad 38040, Pakistan
| | - Khuram Shehzad Khan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Neal S Eash
- The Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, USA
| | - Muhammad Yousuf
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad 38040, Pakistan
| | - Sumanta Chatterjee
- USDA ARS, Hydrology and Remote Sensing Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705, USA; ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Rabia Manzoor
- Land Resources Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Sana Ur Rehman
- National Research Center of Intercropping, The Islamia University of Bahawalpur, Pakistan
| | | |
Collapse
|
16
|
Feng J, Chen L, Xia T, Ruan Y, Sun X, Wu T, Zhong Y, Shao X, Tang Z. Microbial fertilizer regulates C:N:P stoichiometry and alleviates phosphorus limitation in flue-cured tobacco planting soil. Sci Rep 2023; 13:10276. [PMID: 37355746 PMCID: PMC10290673 DOI: 10.1038/s41598-023-37438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 06/21/2023] [Indexed: 06/26/2023] Open
Abstract
Fertilization can be optimized and managed during the flue-cured tobacco growing period by studying the response of soil and microbial biomass stoichiometric characteristics to fertilization. In this study, we investigated the effect of compound fertilizers combined with microbial fertilizer treatments on the stoichiometric characteristics of the rhizosphere soil and the limitations of microbial resources during the flue-cured tobacco growing period. The results indicated that soil and microbial C:N:P varied greatly with the growing period. The effect of sampling time was usually greater than that of fertilization treatment, and microbial C:N:P did not vary with the soil resource stoichiometric ratio. The microbial metabolism of the tobacco-growing soil was limited by phosphorus after extending the growing period, and phosphorus limitation gradually increased from the root extension to the maturation periods but decreased at harvest. The rhizosphere soil microbial nitrogen and phosphorus limitations were mainly affected by soil water content, soil pH, microbial biomass carbon, and the ratio of microbial biomass carbon to microbial biomass phosphorus. Applying microbial fertilizer reduced phosphorus limitation. Therefore, applying microbial fertilizer regulated the limitation of microbial resources by affecting the soil and microbial biomass C:N:P in flue-cured tobacco rhizosphere soils.
Collapse
Affiliation(s)
- Junna Feng
- College of Agricultural and Life Sciences, Kunming University, Kunming, 650214, Yunnan, China
| | - Lulu Chen
- Key Laboratory of Ecosystem Network Observation and Modeling, Center for Forest Ecosystem Studies and Qianyanzhou Ecological Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tiyuan Xia
- College of Agricultural and Life Sciences, Kunming University, Kunming, 650214, Yunnan, China
| | - Yanan Ruan
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Xiaolu Sun
- Agronomy College, Qingdao Agricultural University, Qingdao, 266000, Shandong, China
| | - Tian Wu
- College of Agricultural and Life Sciences, Kunming University, Kunming, 650214, Yunnan, China
| | - Yu Zhong
- College of Agricultural and Life Sciences, Kunming University, Kunming, 650214, Yunnan, China
| | - Xiaodong Shao
- Honghe Branch of Yunnan Tobacco Company, Mile, 652300, Yunnan, China
| | - Zuoxin Tang
- College of Agricultural and Life Sciences, Kunming University, Kunming, 650214, Yunnan, China.
| |
Collapse
|
17
|
Duan Y, Guo B, Zhang L, Li J, Li S, Zhao W, Yang G, Zhou S, Zhou C, Song P, Li P, Fang L, Hou S, Shi D, Zhao H, Guo P. Interactive climate-soil forces shape the spatial distribution of foliar N:P stoichiometry in Vaccinium uliginosum planted in agroforests of Northeast China. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1065680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In regions with a ban on forest logging, fruit-bearing shrubs are favored as an alternative source of ecological products over the harvesting of timber. The introduction of cultured shrubs from their habitat to newly developed lands has to be decided according to nutrient availability. Foliar nitrogen (N) and phosphorus (P) stoichiometry is an easily measured and reliable parameter to quickly indicate possible limits in imbalanced N-P availability. When attempting to create a spatial distribution map of the foliar N:P ratio in an objective shrub species, it is helpful to first explore its potential acclimation to the N:P imbalance caused by the joint forces of soil property and regional climate. This study evaluated the cultivated populations of Vaccinium uliginosum in northeastern China's agroforests, using Vaccinium uliginosum as a model shrub species. A total of 51 populations were selected from 51 managed stands, of which 34 were in forests and 17 on farmlands. Foliar N and P concentrations, soil physical and chemical properties, and topography were investigated in 2018, and regional climatic factors were assessed by averaging previous 5-year records (2013–2018). V. uliginosum was determined to have a foliar N:P ratio lower than 4.4, which can be characterized as a limit of N relative to that of P. On forested lands, soil pH negatively impacted regressed foliar N:P, which was also part of the contributions of soil total P content and average temperature to foliar N concentration. On farmlands, low soil pH also resulted in a reduced foliar N:P ratio with joint contributions of ammonium N, nitrate N, and available P contents in soils and air humidity. Spatial interpolation indicated that western forests could benefit from introduced V. uliginosum with a higher foliar N concentration, while the introduction to eastern farmlands can lead to a higher foliar N:P ratio up to 14.6. Our study demonstrates recommended locations with expected soil and meteorological conditions by mapping spatial distributions, which can be referred to by other species and regions.
Collapse
|