1
|
Ning S, He X, Ma T, Yan T. Attenuated asymmetry of above- versus belowground stoichiometry to a decadal nitrogen addition during stand development. Ecology 2024:e4458. [PMID: 39462766 DOI: 10.1002/ecy.4458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/07/2024] [Accepted: 08/28/2024] [Indexed: 10/29/2024]
Abstract
Deciphering the linkage between ecological stoichiometry and ecosystem functioning under anthropogenic nitrogen (N) deposition is critical for understanding the impact of afforestation on terrestrial carbon (C) sequestration. However, the specific changes in above- versus belowground stoichiometric asymmetry with stand age in response to long-term N addition remain poorly understood. In this study, we investigated changes in stoichiometry following a decadal addition of three levels of N (control, no N addition; low N addition, 20 kg N ha-1 year-1; high N addition, 50 kg N ha-1 year-1) in young, intermediate, and mature stands in three temperate larch plantations (Larix principis-rupprechtii) in North China. We found that low N addition had no impact on both above- (leaf and litter) and belowground (soil and microbe) stoichiometry. In contrast, high N addition resulted in significant asymmetry in above- versus belowground stoichiometry, which then diminished during stand development. Following 10 years of N inputs, the young and intermediate plantations transitioned from a state of relative N limitation to co-limitation by both N and phosphorus (P), whereas the mature plantation continued to experience relative N limitation. Conversely, soil microorganisms exhibited relative P limitation in all three plantations. Broader niche differentiation (N limitation for trees, but P limitation for microorganisms) under long-term N input may have been responsible for the faster attainment of stoichiometric homeostasis in mature plantations than in young plantations. Our findings provide stoichiometric-based insight into the operating mechanisms of large C sinks in young forests, particularly above- versus belowground C stock asymmetry, and highlight the need to consider the role of flexible stoichiometry when forecasting future forest C sinks.
Collapse
Affiliation(s)
- Shijie Ning
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xinru He
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tian Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tao Yan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Qingyuan Forest CERN, National Observation and Research Station, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Zhu Y, Yang X, Tu Y, Wang B, Wang D, Shi Z, Indree T. Rodent disturbance reduces ecosystem stability through regulating plant and soil functions in Hulun Buir steppe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172206. [PMID: 38580124 DOI: 10.1016/j.scitotenv.2024.172206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Brandt's vole (Lasiopodomys brandtii), a typical rodent in the eastern Eurasian Steppe, has unclear impacts on ecosystem stability. In our field study in the Hulun Buir steppe, a multifunctional grazing ecosystem in this region, we used burrow entrance area and burrow density as alternative disturbance indices to derive a Disturbance Index (DI) for quantifying disturbance levels from rodents, and employed generalized linear mixed-effects model and the N-dimensional hypervolume framework to assess the influence of Brandt's vole disturbance on plant and soil functions, and then on the ecosystem functional stability. Our findings unequivocally illustrate that various plant functions including vegetation cover (Cover), aboveground biomass (ABG) and shoot carbon (ShootC) significantly declined with increasing disturbance, while shoot nitrogen (ShootN) and root nitrogen (RootN) show significantly positive responses. Soil functions such as soil nitrogen (SoilN), soil phosphorus (SoilP) and soil organic carbon (SoilC) showed significantly negative responses. Notably, the burrow entrance area exerts a more pronounced impact on both plant and soil functions in comparison to burrow density. Additionally, both disturbance indicators have a more significant influence on plant functions than on soil functions. Overall, the ecosystem functional stability progressively decreases with intensified disturbance, with varying response patterns for plant and soil functions, the former exhibited heightened stability as disturbance intensified, while the latter proved more stable at moderate disturbance levels. Our findings suggest that plant functions were more susceptible to disturbance by Brandt's vole compared to soils. Additionally, an ecosystem destabilization was synchronized with increasing Brandt's vole disturbance, although alterations in the functional stability of plants and soil show a different pattern.
Collapse
Affiliation(s)
- Yuanjun Zhu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaohui Yang
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - Ya Tu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Baizhu Wang
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - Danyu Wang
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhongjie Shi
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - Tuvshintogtokh Indree
- Botanic Garden and Research Institute, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
| |
Collapse
|
3
|
Yang H, Cheng L, Che L, Su Y, Li Y. Nutrients addition decreases soil fungal diversity and alters fungal guilds and co-occurrence networks in a semi-arid grassland in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172100. [PMID: 38556007 DOI: 10.1016/j.scitotenv.2024.172100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Anthropogenic eutrophication is known to impair the diversity and stability of aboveground community, but its effects on the diversity, composition and stability of belowground ecosystems are not yet fully understood. In this study, we conducted a 9-year nitrogen (N) and phosphorus (P) addition experiment in a semi-arid grassland of Northern China to elucidate the impacts of nutrients addition on soil fungal diversity, functional guilds, and co-occurrence networks. The results showed that N addition significantly decreased soil fungal diversity and altered fungal community composition, whereas P addition had no impact on them. The relative abundance of arbuscular mycorrhizal fungi and leaf_saprotroph were reduced by N and P addition, but P addition enhanced the abundance of saprotrophic fungi. Co-occurrence network analysis revealed that N addition destabilized fungal network complexity and stability, while P addition slightly increased the network complexity. Additionally, the network analysis of N × P interaction revealed that P addition mitigated negative effects of N addition on network complexity and stability. Structural equation modeling (SEM) results suggested that nutrients addition directly or indirectly influenced the fungal community structure through the loss of plant richness and the increase of perennial grass biomass. These findings indicate that in comparison to P addition, N addition exhibits a pronounced negative effect on soil fungal communities. Our findings also suggest that changes in plant functional groups under nutrients deposition are pivotal in shaping soil fungal community structure in semi-arid grassland and highlight the need for a better understanding of the belowground ecosystem dynamics.
Collapse
Affiliation(s)
- Hongling Yang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China
| | - Li Cheng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China
| | - Limuge Che
- Graduate School of Dairy Science, Rakuno Gakuen University, Hokkaido, 069-8501, Japan
| | - YongZhong Su
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yulin Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao 028300, China.
| |
Collapse
|
4
|
Wang J, Zhang X, Wang R, Yu M, Chen X, Zhu C, Shang J, Gao J. Climate Factors Influence Above- and Belowground Biomass Allocations in Alpine Meadows and Desert Steppes through Alterations in Soil Nutrient Availability. PLANTS (BASEL, SWITZERLAND) 2024; 13:727. [PMID: 38475573 DOI: 10.3390/plants13050727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Biomass is a direct reflection of community productivity, and the allocation of aboveground and belowground biomass is a survival strategy formed by the long-term adaptation of plants to environmental changes. However, under global changes, the patterns of aboveground-belowground biomass allocations and their controlling factors in different types of grasslands are still unclear. Based on the biomass data of 182 grasslands, including 17 alpine meadows (AMs) and 21 desert steppes (DSs), this study investigates the spatial distribution of the belowground biomass allocation proportion (BGBP) in different types of grasslands and their main controlling factors. The research results show that the BGBP of AMs is significantly higher than that of DSs (p < 0.05). The BGBP of AMs significantly decreases with increasing mean annual temperature (MAT) and mean annual precipitation (MAP) (p < 0.05), while it significantly increases with increasing soil nitrogen content (N), soil phosphorus content (P), and soil pH (p < 0.05). The BGBP of DSs significantly decreases with increasing MAP (p < 0.05), while it significantly increases with increasing soil phosphorus content (P) and soil pH (p < 0.05). The random forest model indicates that soil pH is the most important factor affecting the BGBP of both AMs and DSs. Climate-related factors were identified as key drivers shaping the spatial distribution patterns of BGBP by exerting an influence on soil nutrient availability. Climate and soil factors exert influences not only on grassland biomass allocation directly, but also indirectly by impacting the availability of soil nutrients.
Collapse
Affiliation(s)
- Jiangfeng Wang
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
| | - Xing Zhang
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
| | - Ru Wang
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
| | - Mengyao Yu
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
| | - Xiaohong Chen
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
| | - Chenghao Zhu
- East China Survey and Planning Institute, National Forestry and Grassland Administration, Hangzhou 430010, China
| | - Jinlong Shang
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
| | - Jie Gao
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
- Key Laboratory of Earth Surface Processes of Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Yang X, Song Z, Van Zwieten L, Guo L, Chen J, Luo Z, Wang Y, Luo Y, Wang Z, Wang W, Wang J, Wang Y, Liu CQ, Wang H. Significant accrual of soil organic carbon through long-term rice cultivation in paddy fields in China. GLOBAL CHANGE BIOLOGY 2024; 30:e17213. [PMID: 38436125 DOI: 10.1111/gcb.17213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
Paddy fields serve as significant reservoirs of soil organic carbon (SOC) and their potential for terrestrial carbon (C) sequestration is closely associated with changes in SOC pools. However, there has been a dearth of comprehensive studies quantifying changes in SOC pools following extended periods of rice cultivation across a broad geographical scale. Using 104 rice paddy sampling sites that have been in continuous cultivation since the 1980s across China, we studied the changes in topsoil (0-20 cm) labile organic C (LOC I), semi-labile organic C (LOC II), recalcitrant organic C (ROC), and total SOC. We found a substantial increase in both the content (48%) and density (39%) of total SOC within China's paddy fields between the 1980s to the 2010s. Intriguingly, the rate of increase in content and density of ROC exceeded that of LOC (I and II). Using a structural equation model, we revealed that changes in the content and density of total SOC were mainly driven by corresponding shifts in ROC, which are influenced both directly and indirectly by climatic and soil physicochemical factors; in particular temperature, precipitation, phosphorous (P) and clay content. We also showed that the δ13 CLOC were greater than δ13 CROC , independent of the rice cropping region, and that there was a significant positive correlation between δ13 CSOC and δ13 Cstraw . The δ13 CLOC and δ13 CSOC showed significantly negative correlation with soil total Si, suggesting that soil Si plays a part in the allocation of C into different SOC pools, and its turnover or stabilization. Our study underscores that the global C sequestration of the paddy fields mainly stems from the substantial increase in ROC pool.
Collapse
Affiliation(s)
- Xiaomin Yang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, China
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, China
| | - Zhaoliang Song
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Lukas Van Zwieten
- NSW Department of Primary Industries, Wollongbar, New South Wales, Australia
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Laodong Guo
- School of Freshwater Science, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Ji Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Zhongkui Luo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yidong Wang
- Tianjin Key Laboratory of Water Resources and Environment, School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China
| | - Yu Luo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zhengang Wang
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou, China
| | - Weiqi Wang
- Institute of Geography, Fujian Normal University, Fuzhou, Fujian, China
| | - Jingxu Wang
- Institute of Geography, Henan Academy of Sciences, Zhengzhou, China
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Cong-Qiang Liu
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Hailong Wang
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| |
Collapse
|