1
|
Pfeifer MA, Khang CH. Nup84 persists within the nuclear envelope of the rice blast fungus, Magnaporthe oryzae, during mitosis. Fungal Genet Biol 2020; 146:103472. [PMID: 32980454 DOI: 10.1016/j.fgb.2020.103472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/09/2023]
Abstract
The arrangement of the nuclear envelope in the rice blast fungus, Magnaporthe oryzae, was previously undetermined. Here, we identified two conserved components of the nuclear envelope, a core nucleoporin, Nup84, and an inner nuclear membrane protein, Src1. Live-cell super-resolution structured illumination microscopy revealed that Nup84-tdTomato and Src1-EGFP colocalized within the nuclear envelope during interphase and that Nup84-tdTomato remained associated with the dividing nucleus. We also found that appressorium development involved a mitotic nuclear migration event through the germ tube.
Collapse
Affiliation(s)
- Mariel A Pfeifer
- Department of Plant Biology, 2502 Miller Plant Sciences, University of Georgia, Athens, GA 30602-7271, USA
| | - Chang Hyun Khang
- Department of Plant Biology, 2502 Miller Plant Sciences, University of Georgia, Athens, GA 30602-7271, USA.
| |
Collapse
|
2
|
Schizosaccharomyces japonicus: A Distinct Dimorphic Yeast among the Fission Yeasts. Cold Spring Harb Protoc 2017; 2017:pdb.top082651. [PMID: 28733412 DOI: 10.1101/pdb.top082651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genomic sequencing data and morphological properties demonstrate evolutionary relationships among groups of the fission yeast, Schizosaccharomyces Phylogenetically, S. japonicus is the furthest removed from other species of fission yeast. The basic characteristics of cell proliferation are shared among all fission yeast, including the process of binary fission during vegetative growth, conjugation and karyogamy with horsetail movement, mating-type switching, and sporulation. However, S. japonicus also exhibits characteristics that are unique to filamentous fungi. S. japonicus is a nonpathogenic yeast that exhibits dimorphism. Depending on the environmental conditions, S. japonicus transforms from yeast cells into filamentous cells (hyphae), and blue light triggers synchronous septation of hyphal cells. A rough version of the whole-genome sequence is now available, facilitating genetic manipulation of S. japonicus. Furthermore, the extensive genetic knowledge available for S. pombe is aiding the development of genetic tools for analyzing S. japonicus. S. japonicus will help shed light on the evolutionary relationships among the fission yeast.
Collapse
|
3
|
Aoki K, Niki H. Release of condensin from mitotic chromosomes requires the Ran-GTP gradient in the reorganized nucleus. Biol Open 2017; 6:1614-1628. [PMID: 28954740 PMCID: PMC5703609 DOI: 10.1242/bio.027193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After mitosis, nuclear reorganization occurs together with decondensation of mitotic chromosomes and reformation of the nuclear envelope, thereby restoring the Ran-GTP gradient between the nucleus and cytoplasm. The Ran-GTP gradient is dependent on Pim1/RCC1. Interestingly, a defect in Pim1/RCC1 in Schizosaccharomyces pombe causes postmitotic condensation of chromatin, namely hypercondensation, suggesting a relationship between the Ran-GTP gradient and chromosome decondensation. However, how Ran-GTP interacts with chromosome decondensation is unresolved. To examine this interaction, we used Schizosaccharomyces japonicus, which is known to undergo partial breakdown of the nuclear membrane during mitosis. We found that Pim1/RCC1 was localized on nuclear pores, but this localization failed in a temperature-sensitive mutant of Pim1/RCC1. The mutant cells exhibited hypercondensed chromatin after mitosis due to prolonged association of condensin on the chromosomes. Conceivably, a condensin-dephosphorylation defect might cause hypercondensed chromatin, since chromosomal localization of condensin is dependent on phosphorylation by cyclin-dependent kinase (CDK). Indeed, CDK-phospho-mimic mutation of condensin alone caused untimely condensin localization, resulting in hypercondensed chromatin. Together, these results suggest that dephosphorylation of CDK sites of condensin might require the Ran-GTP gradient produced by nuclear pore-localized Pim1/RCC1. Summary: A mutant of Pim1/RCC1 caused hypercondensed chromatin after mitosis due to prolonged association of condensin on chromosomes, suggesting that dephosphorylation of CDK sites of condensin might require Ran-GTP after mitosis.
Collapse
Affiliation(s)
- Keita Aoki
- Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan .,Department of Genetics, SOKENDAI, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hironori Niki
- Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, SOKENDAI, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
4
|
Melloy PG, Rose MD. Influence of the bud neck on nuclear envelope fission in Saccharomyces cerevisiae. Exp Cell Res 2017; 358:390-396. [PMID: 28711459 DOI: 10.1016/j.yexcr.2017.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 11/30/2022]
Abstract
Studies have shown that nuclear envelope fission (karyokinesis) in budding yeast depends on cytokinesis, but not distinguished whether this was a direct requirement, indirect, because of cell cycle arrest, or due to bud neck-localized proteins impacting both processes. To determine the requirements for karyokinesis, we examined mutants conditionally defective for bud emergence and/or nuclear migration. The common mutant phenotype was completion of the nuclear division cycle within the mother cell, but karyokinesis did not occur. In the cdc24 swe1 mutant, at the non-permissive temperature, multiple nuclei accumulated within the unbudded cell, with connected nuclear envelopes. Upon return to the permissive temperature, the cdc24 swe1 mutant initiated bud emergence, but only the nucleus spanning the neck underwent fission suggesting that the bud neck region is important for fission initiation. The neck may be critical for either mechanical reasons, as the contractile ring might facilitate fission, or for regulatory reasons, as the site of a protein network regulating nuclear envelope fission, mitotic exit, and cytokinesis. We also found that 77-85% of pairs of septin mutant nuclei completed nuclear envelope fission. In addition, 27% of myo1Δ mutant nuclei completed karyokinesis. These data suggested that fission is not dependent on mechanical contraction at the bud neck, but was instead controlled by regulatory proteins there.
Collapse
Affiliation(s)
- Patricia G Melloy
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States; Department of Biological and Allied Health Sciences, Fairleigh Dickinson University, Madison, NJ, United States.
| | - Mark D Rose
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| |
Collapse
|
5
|
Fernández-Álvarez A, Cooper JP. Chromosomes Orchestrate Their Own Liberation: Nuclear Envelope Disassembly. Trends Cell Biol 2016; 27:255-265. [PMID: 28024902 DOI: 10.1016/j.tcb.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022]
Abstract
The mammalian nuclear division cycle is coordinated with nuclear envelope breakdown (NEBD), in which the entire nuclear envelope (NE) is dissolved to allow chromosomes to access their segregation vehicle, the spindle. In other eukaryotes, complete NEBD is replaced by localized disassembly or remodeling of the NE. Although the molecular mechanisms controlling NE disassembly are incompletely understood, coordinated cycles of modification of specific NE components drive breakdown. Here, we review the current state of knowledge regarding NE disassembly and argue for a role of chromosome-NE contacts in triggering initiation of NE disassembly and thereby, cell division.
Collapse
Affiliation(s)
- Alfonso Fernández-Álvarez
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Julia Promisel Cooper
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Asakawa H, Yang HJ, Hiraoka Y, Haraguchi T. Virtual Nuclear Envelope Breakdown and Its Regulators in Fission Yeast Meiosis. Front Cell Dev Biol 2016; 4:5. [PMID: 26870731 PMCID: PMC4735346 DOI: 10.3389/fcell.2016.00005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/15/2016] [Indexed: 11/24/2022] Open
Abstract
Ran, a small GTPase, is required for the spindle formation and nuclear envelope (NE) formation. After NE breakdown (NEBD) during mitosis in metazoan cells, the Ran-GTP gradient across the NE is lost and Ran-GTP becomes concentrated around chromatin, thus affecting the stability of microtubules and promoting the assembly of spindle microtubules and segregation of chromosomes. Mitosis in which chromosomes are segregated subsequent to NEBD is called “open mitosis.” In contrast, many fungi undergo a process termed “closed mitosis” in which chromosome segregation and spindle formation occur without NEBD. Although the fission yeast Schizosaccharomyces pombe undergoes a closed mitosis, it exhibits a short period during meiosis (anaphase of the second meiosis; called “anaphase II”) when nuclear and cytoplasmic proteins are mixed in the presence of intact NE and nuclear pore complexes (NPC). This “virtual” nuclear envelope breakdown (vNEBD) involves changes in the localization of RanGAP1, an activator of Ran-GTP hydrolysis. Recently, Nup132, a component of the structural core Nup107-160 subcomplex of the NPC, has been shown to be involved in the maintenance of the nuclear cytoplasmic barrier in yeast meiosis. In this review, we highlight the possible roles of RanGAP1 and Nup132 in vNEBD and discuss the biological significance of vNEBD in S. pombe meiosis.
Collapse
Affiliation(s)
- Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University Suita, Japan
| | - Hui-Ju Yang
- Graduate School of Frontier Biosciences, Osaka University Suita, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan; Cell Biology Group, Advanced ICT Research Institute Kobe, National Institute of Information and Communications TechnologyKobe, Japan; Graduate School of Science, Department of Biology, Osaka UniversityToyonaka, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka UniversitySuita, Japan; Cell Biology Group, Advanced ICT Research Institute Kobe, National Institute of Information and Communications TechnologyKobe, Japan; Graduate School of Science, Department of Biology, Osaka UniversityToyonaka, Japan
| |
Collapse
|
7
|
Niki H. Schizosaccharomyces japonicus
: the fission yeast is a fusion of yeast and hyphae. Yeast 2014; 31:83-90. [DOI: 10.1002/yea.2996] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hironori Niki
- Microbial Genetics Laboratory, Genetic Strains Research Centre National Institute of Genetics 1111 Yata Mishima Shizuoka 411‐8540 Japan
- Department of Genetics Graduate University for Advanced Studies Sokendai, 1111 Yata Mishima Shizuoka 411‐8540 Japan
| |
Collapse
|
8
|
Smoyer CJ, Jaspersen SL. Breaking down the wall: the nuclear envelope during mitosis. Curr Opin Cell Biol 2013; 26:1-9. [PMID: 24529240 DOI: 10.1016/j.ceb.2013.08.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 11/28/2022]
Abstract
A defining feature of eukaryotic cells is the nucleus, which houses the genome inside the nuclear envelope (NE): a double lipid bilayer that separates the nuclear and cytoplasmic materials. Although the NE is commonly viewed as a barrier that is overcome only by embedded nuclear pore complexes (NPCs) that facilitate nuclear-cytoplasmic trafficking, recent work in a wide range of eukaryotes reveals that the NE is a dynamic organelle that is modified each time the cell divides to ultimately establish two functional daughter nuclei. Here, we review how studies of divergent mitotic strategies have helped elucidate common properties of NE biology that allow it to function throughout the cell cycle.
Collapse
Affiliation(s)
- Christine J Smoyer
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|