1
|
Caro-Astorga J, Meyerowitz JT, Stork DA, Nattermann U, Piszkiewicz S, Vimercati L, Schwendner P, Hocher A, Cockell C, DeBenedictis E. Polyextremophile engineering: a review of organisms that push the limits of life. Front Microbiol 2024; 15:1341701. [PMID: 38903795 PMCID: PMC11188471 DOI: 10.3389/fmicb.2024.1341701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Nature exhibits an enormous diversity of organisms that thrive in extreme environments. From snow algae that reproduce at sub-zero temperatures to radiotrophic fungi that thrive in nuclear radiation at Chernobyl, extreme organisms raise many questions about the limits of life. Is there any environment where life could not "find a way"? Although many individual extremophilic organisms have been identified and studied, there remain outstanding questions about the limits of life and the extent to which extreme properties can be enhanced, combined or transferred to new organisms. In this review, we compile the current knowledge on the bioengineering of extremophile microbes. We summarize what is known about the basic mechanisms of extreme adaptations, compile synthetic biology's efforts to engineer extremophile organisms beyond what is found in nature, and highlight which adaptations can be combined. The basic science of extremophiles can be applied to engineered organisms tailored to specific biomanufacturing needs, such as growth in high temperatures or in the presence of unusual solvents.
Collapse
Affiliation(s)
| | | | - Devon A. Stork
- Pioneer Research Laboratories, San Francisco, CA, United States
| | - Una Nattermann
- Pioneer Research Laboratories, San Francisco, CA, United States
| | | | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | | | - Antoine Hocher
- London Institute of Medical Sciences, London, United Kingdom
| | - Charles Cockell
- UK Centre for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Erika DeBenedictis
- The Francis Crick Institute, London, United Kingdom
- Pioneer Research Laboratories, San Francisco, CA, United States
| |
Collapse
|
2
|
Dumina M, Zhgun A. Thermo-L-Asparaginases: From the Role in the Viability of Thermophiles and Hyperthermophiles at High Temperatures to a Molecular Understanding of Their Thermoactivity and Thermostability. Int J Mol Sci 2023; 24:ijms24032674. [PMID: 36768996 PMCID: PMC9916696 DOI: 10.3390/ijms24032674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
L-asparaginase (L-ASNase) is a vital enzyme with a broad range of applications in medicine, food industry, and diagnostics. Among various organisms expressing L-ASNases, thermophiles and hyperthermophiles produce enzymes with superior performances-stable and heat resistant thermo-ASNases. This review is an attempt to take a broader view on the thermo-ASNases. Here we discuss the position of thermo-ASNases in the large family of L-ASNases, their role in the heat-tolerance cellular system of thermophiles and hyperthermophiles, and molecular aspects of their thermoactivity and thermostability. Different types of thermo-ASNases exhibit specific L-asparaginase activity and additional secondary activities. All products of these enzymatic reactions are associated with diverse metabolic pathways and are important for mitigating heat stress. Thermo-ASNases are quite distinct from typical mesophilic L-ASNases based on structural properties, kinetic and activity profiles. Here we attempt to summarize the current understanding of the molecular mechanisms of thermo-ASNases' thermoactivity and thermostability, from amino acid composition to structural-functional relationships. Research of these enzymes has fundamental and biotechnological significance. Thermo-ASNases and their improved variants, cloned and expressed in mesophilic hosts, can form a large pool of enzymes with valuable characteristics for biotechnological application.
Collapse
|
3
|
Hori H. Transfer RNA Modification Enzymes with a Thiouridine Synthetase, Methyltransferase and Pseudouridine Synthase (THUMP) Domain and the Nucleosides They Produce in tRNA. Genes (Basel) 2023; 14:genes14020382. [PMID: 36833309 PMCID: PMC9957541 DOI: 10.3390/genes14020382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The existence of the thiouridine synthetase, methyltransferase and pseudouridine synthase (THUMP) domain was originally predicted by a bioinformatic study. Since the prediction of the THUMP domain more than two decades ago, many tRNA modification enzymes containing the THUMP domain have been identified. According to their enzymatic activity, THUMP-related tRNA modification enzymes can be classified into five types, namely 4-thiouridine synthetase, deaminase, methyltransferase, a partner protein of acetyltransferase and pseudouridine synthase. In this review, I focus on the functions and structures of these tRNA modification enzymes and the modified nucleosides they produce. Biochemical, biophysical and structural studies of tRNA 4-thiouridine synthetase, tRNA methyltransferases and tRNA deaminase have established the concept that the THUMP domain captures the 3'-end of RNA (in the case of tRNA, the CCA-terminus). However, in some cases, this concept is not simply applicable given the modification patterns observed in tRNA. Furthermore, THUMP-related proteins are involved in the maturation of other RNAs as well as tRNA. Moreover, the modified nucleosides, which are produced by the THUMP-related tRNA modification enzymes, are involved in numerous biological phenomena, and the defects of genes for human THUMP-related proteins are implicated in genetic diseases. In this review, these biological phenomena are also introduced.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
4
|
Sakamoto A, Tamakoshi M, Moriya T, Oshima T, Takao K, Sugita Y, Furuchi T, Niitsu M, Uemura T, Igarashi K, Kashiwagi K, Terui Y. Polyamines produced by an extreme thermophile are essential for cell growth at high temperature. J Biochem 2022; 172:109-115. [PMID: 35639548 DOI: 10.1093/jb/mvac048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/14/2022] Open
Abstract
An extreme thermophile, Thermus thermophilus grows at an optimum temperature of around 70 oC and produces 16 different polyamines including long-chain and branched-chain polyamines. We found that the composition of polyamines in the thermophile cells changes with culture temperature. Long-chain and branched-chain polyamines (unusual polyamines) were increased in the cells grown at high temperature such as 80 oC, but they were minor components in the cells grown at relatively lower temperature such as 60 oC. The effects of polyamines on cell growth were studied using T. thermophilus HB8 ΔspeA deficient in arginine decarboxylase. Cell growth of this mutant strain was significantly decreased at 70 oC. This mutant strain cannot produce polyamines and grows poorly at 75 oC. It was also determined whether polyamines are directly involved in protecting DNA from DNA double-strand breaks induced by heat. Polyamines protected DNA against double-strand breaks. Therefore, polyamines play essential roles in cell growth at extremely high temperature through maintaining a functional conformation of DNA against DNA double-strand breaks and depurination.
Collapse
Affiliation(s)
- Akihiko Sakamoto
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba 288-0025, Japan
| | - Masatada Tamakoshi
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0302, Japan
| | - Toshiyuki Moriya
- Institute of Environmental Biology, Kyowa-Kako, Machida, Tokyo 194-0035, Japan
| | - Tairo Oshima
- Institute of Environmental Biology, Kyowa-Kako, Machida, Tokyo 194-0035, Japan
| | - Koichi Takao
- Department of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295, Japan
| | - Yoshiaki Sugita
- Department of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295, Japan
| | - Takemitsu Furuchi
- Department of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295, Japan
| | - Masaru Niitsu
- Department of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295, Japan
| | - Takeshi Uemura
- Department of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295, Japan
| | - Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba 260-0856, Japan.,Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba 288-0025, Japan
| | - Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba 288-0025, Japan
| |
Collapse
|
5
|
Winther KS, Sørensen MA, Svenningsen SL. Polyamines are Required for tRNA Anticodon Modification in Escherichia coli. J Mol Biol 2021; 433:167073. [PMID: 34058151 DOI: 10.1016/j.jmb.2021.167073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/19/2021] [Accepted: 05/23/2021] [Indexed: 11/25/2022]
Abstract
Biogenic polyamines are natural aliphatic polycations formed from amino acids by biochemical pathways that are highly conserved from bacteria to humans. Their cellular concentrations are carefully regulated and dysregulation causes severe cell growth defects. Polyamines have high affinity for nucleic acids and are known to interact with mRNA, tRNA and rRNA to stimulate the translational machinery, but the exact molecular mechanism(s) for this stimulus is still unknown. Here we exploit that Escherichia coli is viable in the absence of polyamines, including the universally conserved putrescine and spermidine. Using global macromolecule labelling approaches we find that ribosome efficiency is reduced by 50-70% in the absence of polyamines and this reduction is caused by slow translation elongation speed. The low efficiency causes rRNA and multiple tRNA species to be overproduced in the absence of polyamines, suggesting an impact on the feedback regulation of stable RNA transcription. Importantly, we find that polyamine deficiency affects both tRNA levels and tRNA modification patterns. Specifically, a large fraction of tRNAhis, tRNAtyr and tRNAasn lack the queuosine modification in the anticodon "wobble" base, which can be reversed by addition of polyamines to the growth medium. In conclusion, we demonstrate that polyamines are needed for modification of specific tRNA, possibly by facilitating the interaction with modification enzymes.
Collapse
Affiliation(s)
| | - Michael Askvad Sørensen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Sine Lo Svenningsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| |
Collapse
|
6
|
Jaramillo-Ramírez J, Marcial-Bazaldua N, Sánchez-Puig N. Characterisation of the interaction of guanine nucleotides with ribosomal GTPase Lsg1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140538. [PMID: 32916301 DOI: 10.1016/j.bbapap.2020.140538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/06/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Ribosome biogenesis in eukaryotes requires the participation of several transactivation factors that are involved in the modification, assembly, transport and quality control of the ribosomal subunits. One of these factors is the Large subunit GTPase 1 (Lsg1), a protein that acts as the release factor for the export adaptor named Nonsense-mediated mRNA decay 3 protein (Nmd3) and facilitates the incorporation of the last structural protein uL16 into the 60S subunit. Here, we characterised the recombinant yeast Lsg1 and studied its catalysis and binding properties for guanine nucleotides. We described the interaction of Lsg1 with guanine nucleotides alone and in the presence of the complex Nmd3•60S using fluorescence spectroscopy. Lsg1 has a greater affinity for GTP than for GDP suggesting that in the cell cytoplasm it exists mainly bound to the former. In the presence of 60S subunits loaded with Nmd3, the affinity of Lsg1 for both nucleotides increases but to a larger extent towards GTP. From this observation together with the excess of GTP present in the cytoplasm of exponentially growing cells over that of GDP, we can infer that the pre-ribosomal particle composed by Nmd3•60S acts as a GTP Stabilising Factor for Lsg1. Additionally, Lsg1 undergoes different conformational changes depending on its binding partner or the guanine nucleotides it interacts with. Steady-state kinetic analysis of free Lsg1 indicated slow GTP hydrolysis with values of kcat 1 min-1 and Km of 34 μM.
Collapse
Affiliation(s)
- Juliana Jaramillo-Ramírez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Nancy Marcial-Bazaldua
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Nuria Sánchez-Puig
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, Mexico..
| |
Collapse
|
7
|
Arakawa S, Kamizaki K, Kuwana Y, Kataoka N, Naoe C, Takemoto C, Yokogawa T, Hori H. Application of solid-phase DNA probe method with cleavage by deoxyribozyme for analysis of long non-coding RNAs. J Biochem 2020; 168:273-283. [PMID: 32289169 DOI: 10.1093/jb/mvaa048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/02/2020] [Indexed: 11/12/2022] Open
Abstract
The solid-phase DNA probe method is a well-established technique for tRNA purification. We have applied this method for purification and analysis of other non-coding RNAs. Three columns for purification of tRNAPhe, transfer-messenger RNA (tmRNA) and 16S rRNA from Thermus thermophilus were connected in tandem and purifications were performed. From each column, tRNAPhe, tmRNA and 16S rRNA could be purified in a single step. This is the first report of purification of native tmRNA from T. thermophilus and the purification demonstrates that the solid-phase DNA probe method is applicable to non-coding RNA, which is present in lower amounts than tRNA. Furthermore, if a long non-coding RNA is cleaved site-specifically and the fragment can be purified by the solid-phase DNA probe method, modified nucleosides in the long non-coding RNA can be analysed. Therefore, we designed a deoxyribozyme (DNAzyme) to perform site-specific cleavage of 16S rRNA, examined optimum conditions and purified the resulting RNA fragment. Sequencing of complimentary DNA and mass spectrometric analysis revealed that the purified RNA corresponded to the targeted fragment of 16S rRNA. Thus, the combination of DNAzyme cleavage and purification using solid-phase DNA probe methodology can be a useful technique for analysis of modified nucleosides in long non-coding RNAs.
Collapse
Affiliation(s)
- Shizuka Arakawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kohsuke Kamizaki
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Yusuke Kuwana
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Naruki Kataoka
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Chieko Naoe
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Chie Takemoto
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takashi Yokogawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
8
|
Hori H. Regulatory Factors for tRNA Modifications in Extreme- Thermophilic Bacterium Thermus thermophilus. Front Genet 2019; 10:204. [PMID: 30906314 PMCID: PMC6418473 DOI: 10.3389/fgene.2019.00204] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/26/2019] [Indexed: 01/02/2023] Open
Abstract
Thermus thermophilus is an extreme-thermophilic bacterium that can grow at a wide range of temperatures (50-83°C). To enable T. thermophilus to grow at high temperatures, several biomolecules including tRNA and tRNA modification enzymes show extreme heat-resistance. Therefore, the modified nucleosides in tRNA from T. thermophilus have been studied mainly from the view point of tRNA stabilization at high temperatures. Such studies have shown that several modifications stabilize the structure of tRNA and are essential for survival of the organism at high temperatures. Together with tRNA modification enzymes, the modified nucleosides form a network that regulates the extent of different tRNA modifications at various temperatures. In this review, I describe this network, as well as the tRNA recognition mechanism of individual tRNA modification enzymes. Furthermore, I summarize the roles of other tRNA stabilization factors such as polyamines and metal ions.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Sciences and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| |
Collapse
|
9
|
Hori H, Kawamura T, Awai T, Ochi A, Yamagami R, Tomikawa C, Hirata A. Transfer RNA Modification Enzymes from Thermophiles and Their Modified Nucleosides in tRNA. Microorganisms 2018; 6:E110. [PMID: 30347855 PMCID: PMC6313347 DOI: 10.3390/microorganisms6040110] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
To date, numerous modified nucleosides in tRNA as well as tRNA modification enzymes have been identified not only in thermophiles but also in mesophiles. Because most modified nucleosides in tRNA from thermophiles are common to those in tRNA from mesophiles, they are considered to work essentially in steps of protein synthesis at high temperatures. At high temperatures, the structure of unmodified tRNA will be disrupted. Therefore, thermophiles must possess strategies to stabilize tRNA structures. To this end, several thermophile-specific modified nucleosides in tRNA have been identified. Other factors such as RNA-binding proteins and polyamines contribute to the stability of tRNA at high temperatures. Thermus thermophilus, which is an extreme-thermophilic eubacterium, can adapt its protein synthesis system in response to temperature changes via the network of modified nucleosides in tRNA and tRNA modification enzymes. Notably, tRNA modification enzymes from thermophiles are very stable. Therefore, they have been utilized for biochemical and structural studies. In the future, thermostable tRNA modification enzymes may be useful as biotechnology tools and may be utilized for medical science.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takuya Kawamura
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takako Awai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Anna Ochi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
10
|
Abstract
Most of the phylogenetic diversity of life is found in bacteria and archaea, and is reflected in the diverse metabolism and functions of bacterial and archaeal polyamines. The polyamine spermidine was probably present in the last universal common ancestor, and polyamines are known to be necessary for critical physiological functions in bacteria, such as growth, biofilm formation, and other surface behaviors, and production of natural products, such as siderophores. There is also phylogenetic diversity of function, indicated by the role of polyamines in planktonic growth of different species, ranging from absolutely essential to entirely dispensable. However, the cellular molecular mechanisms responsible for polyamine function in bacterial growth are almost entirely unknown. In contrast, the molecular mechanisms of essential polyamine functions in archaea are better understood: covalent modification by polyamines of translation factor aIF5A and the agmatine modification of tRNAIle As with bacterial hyperthermophiles, archaeal thermophiles require long-chain and branched polyamines for growth at high temperatures. For bacterial species in which polyamines are essential for growth, it is still unknown whether the molecular mechanisms underpinning polyamine function involve covalent or noncovalent interactions. Understanding the cellular molecular mechanisms of polyamine function in bacterial growth and physiology remains one of the great challenges for future polyamine research.
Collapse
Affiliation(s)
- Anthony J Michael
- From the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
11
|
Yamagami R, Miyake R, Fukumoto A, Nakashima M, Hori H. Consumption of N5, N10-methylenetetrahydrofolate in Thermus thermophilus under nutrient-poor condition. J Biochem 2018. [PMID: 29538705 DOI: 10.1093/jb/mvy037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
TrmFO catalyzes the formation of 5-methyluridine at position 54 in tRNA and uses N5, N10-methylenetetrahydrofolate (CH2THF) as the methyl group donor. We found that the trmFO gene-disruptant strain of Thermus thermophilus, an extremely thermophilic eubacterium, can grow faster than the wild-type strain in the synthetic medium at 70°C (optimal growth temperature). Nucleoside analysis revealed that the majority of modifications were appropriately introduced into tRNA, showing that the limited nutrients are preferentially consumed in the tRNA modification systems. CH2THF is consumed not only for tRNA methylation by TrmFO but also for dTMP synthesis by ThyX and methionine synthesis by multiple steps including MetF reaction. In vivo experiment revealed that methylene group derived from serine was rapidly incorporated into DNA in the absence of TrmFO. Furthermore, the addition of thymidine to the medium accelerated growth speed of the wild-type strain. Moreover, in vitro experiments showed that TrmFO interfered with ThyX through consumption of CH2THF. Addition of methionine to the medium accelerated growth speed of wild-type strain and the activity of TrmFO was disturbed by MetF. Thus, the consumption of CH2THF by TrmFO has a negative effect on dTMP and methionine syntheses and results in the slow growth under a nutrient-poor condition.
Collapse
Affiliation(s)
- Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Ryota Miyake
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Ayaka Fukumoto
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Misa Nakashima
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
12
|
Gevrekci AÖ. The roles of polyamines in microorganisms. World J Microbiol Biotechnol 2017; 33:204. [PMID: 29080149 DOI: 10.1007/s11274-017-2370-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/15/2017] [Indexed: 10/18/2022]
Abstract
Polyamines are small polycations that are well conserved in all the living organisms except Archae, Methanobacteriales and Halobacteriales. The most common polyamines are putrescine, spermidine and spermine, which exist in varying concentrations in different organisms. They are involved in a variety of cellular processes such as gene expression, cell growth, survival, stress response and proliferation. Therefore, diverse regulatory pathways are evolved to ensure strict regulation of polyamine concentration in the cells. Polyamine levels are kept under strict control by biosynthetic pathways as well as cellular uptake driven by specific transporters. Reverse genetic studies in microorganisms showed that deletion of the genes in polyamine metabolic pathways or depletion of polyamines have negative effects on cell survival and proliferation. The protein products of these genes are also used as drug targets against pathogenic protozoa. These altogether confirm the significant roles of polyamines in the cells. This mini-review focuses on the differential concentrations of polyamines and their cellular functions in different microorganisms. This will provide an insight about the diverse evolution of polyamine metabolism and function based on the physiology and the ecological context of the microorganisms.
Collapse
Affiliation(s)
- Aslıhan Örs Gevrekci
- Department of Psychology, Faculty of Science and Letters, Başkent University, Ankara, Turkey.
| |
Collapse
|