1
|
Jeong E, Willett R, Rissone A, La Spina M, Puertollano R. TMEM55B links autophagy flux, lysosomal repair, and TFE3 activation in response to oxidative stress. Nat Commun 2024; 15:93. [PMID: 38168055 PMCID: PMC10761734 DOI: 10.1038/s41467-023-44316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Lysosomes have emerged as critical regulators of cellular homeostasis. Here we show that the lysosomal protein TMEM55B contributes to restore cellular homeostasis in response to oxidative stress by three different mechanisms: (1) TMEM55B mediates NEDD4-dependent PLEKHM1 ubiquitination, causing PLEKHM1 proteasomal degradation and halting autophagosome/lysosome fusion; (2) TMEM55B promotes recruitment of components of the ESCRT machinery to lysosomal membranes to stimulate lysosomal repair; and (3) TMEM55B sequesters the FLCN/FNIP complex to facilitate translocation of the transcription factor TFE3 to the nucleus, allowing expression of transcriptional programs that enable cellular adaptation to stress. Knockout of tmem55 genes in zebrafish embryos increases their susceptibility to oxidative stress, causing early death of tmem55-KO animals in response to arsenite toxicity. Altogether, our work identifies a role for TMEM55B as a molecular sensor that coordinates autophagosome degradation, lysosomal repair, and activation of stress responses.
Collapse
Affiliation(s)
- Eutteum Jeong
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rose Willett
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alberto Rissone
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martina La Spina
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Odfalk KF, Wickline JL, Smith S, Dobrowolski R, Hopp SC. Hippocampal TMEM55B overexpression in the 5XFAD mouse model of Alzheimer's disease. Hippocampus 2024; 34:29-35. [PMID: 37961834 PMCID: PMC10873028 DOI: 10.1002/hipo.23586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Dysfunction of the endosomal-lysosomal network is a notable feature of Alzheimer's disease (AD) pathology. Dysfunctional endo-lysosomal vacuoles accumulate in dystrophic neurites surrounding amyloid β (Aβ) plaques and may be involved in the pathogenesis and progression of Aβ aggregates. Trafficking and thus maturation of these dysfunctional vacuoles is disrupted in the vicinity of Aβ plaques. Transmembrane protein 55B (TMEM55B), also known as phosphatidylinositol-4,5-bisphosphate 4-phosphatase 1 (PIP4P1) is an endo-lysosomal membrane protein that is necessary for appropriate trafficking of endo-lysosomes. The present study tested whether overexpression of TMEM55B in the hippocampus could prevent plaque-associated axonal accumulation of dysfunctional endo-lysosomes, reduce Aβ plaque load, and prevent hippocampal-dependent learning and memory deficits in the 5XFAD mouse models of Aβ plaque pathology. Immunohistochemical analyses revealed a modest but significant reduction in the accumulation of endo-lysosomes in dystrophic neurites surrounding Aβ plaques, but there was no change in hippocampal-dependent memory or plaque load. Overall, these data indicate a potential role for TMEM55B in reducing endo-lysosomal dysfunction during AD-like Aβ pathology.
Collapse
Affiliation(s)
- Kristian F. Odfalk
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio
- Department of Pharmacology, University of Texas Health Science Center San Antonio
| | - Jessica L. Wickline
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio
- Department of Pharmacology, University of Texas Health Science Center San Antonio
| | - Sabrina Smith
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio
- Department of Pharmacology, University of Texas Health Science Center San Antonio
| | - Radek Dobrowolski
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio
- Rutgers University
| | - Sarah C. Hopp
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio
- Department of Pharmacology, University of Texas Health Science Center San Antonio
| |
Collapse
|
3
|
Pal P, Taylor M, Lam PY, Tonelli F, Hecht CA, Lis P, Nirujogi RS, Phung TK, Yeshaw WM, Jaimon E, Fasimoye R, Dickie EA, Wightman M, Macartney T, Pfeffer SR, Alessi DR. Parkinson's VPS35[D620N] mutation induces LRRK2-mediated lysosomal association of RILPL1 and TMEM55B. SCIENCE ADVANCES 2023; 9:eadj1205. [PMID: 38091401 PMCID: PMC10848721 DOI: 10.1126/sciadv.adj1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
We demonstrate that the Parkinson's VPS35[D620N] mutation alters the expression of ~220 lysosomal proteins and stimulates recruitment and phosphorylation of Rab proteins at the lysosome. This recruits the phospho-Rab effector protein RILPL1 to the lysosome where it binds to the lysosomal integral membrane protein TMEM55B. We identify highly conserved regions of RILPL1 and TMEM55B that interact and design mutations that block binding. In mouse fibroblasts, brain, and lung, we demonstrate that the VPS35[D620N] mutation reduces RILPL1 levels, in a manner reversed by LRRK2 inhibition and proteasome inhibitors. Knockout of RILPL1 enhances phosphorylation of Rab substrates, and knockout of TMEM55B increases RILPL1 levels. The lysosomotropic agent LLOMe also induced LRRK2 kinase-mediated association of RILPL1 to the lysosome, but to a lower extent than the D620N mutation. Our study uncovers a pathway through which dysfunctional lysosomes resulting from the VPS35[D620N] mutation recruit and activate LRRK2 on the lysosomal surface, driving assembly of the RILPL1-TMEM55B complex.
Collapse
Affiliation(s)
- Prosenjit Pal
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Matthew Taylor
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Pui Yiu Lam
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Francesca Tonelli
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Chloe A. Hecht
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | - Pawel Lis
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Raja S. Nirujogi
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Toan K. Phung
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Wondwossen M. Yeshaw
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | - Ebsy Jaimon
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | - Rotimi Fasimoye
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Emily A. Dickie
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Melanie Wightman
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Suzanne R. Pfeffer
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | - Dario R. Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
4
|
Sasazawa Y, Hattori N, Saiki S. JNK-interacting protein 4 is a central molecule for lysosomal retrograde trafficking. Bioessays 2023; 45:e2300052. [PMID: 37559169 DOI: 10.1002/bies.202300052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Lysosomal positioning is an important factor in regulating cellular responses, including autophagy. Because proteins encoded by disease-responsible genes are involved in lysosomal trafficking, proper intracellular lysosomal trafficking is thought to be essential for cellular homeostasis. In the past few years, the mechanisms of lysosomal trafficking have been elucidated with a focus on adapter proteins linking motor proteins to lysosomes. Here, we outline recent findings on the mechanisms of lysosomal trafficking by focusing on adapter protein c-Jun NH2 -terminal kinase-interacting protein (JIP) 4, which plays a central role in this process, and other JIP4 functions and JIP family proteins. Additionally, we discuss neuronal diseases associated with aberrance in the JIP family protein. Accumulating evidence suggests that chemical manipulation of lysosomal positioning may be a therapeutic approach for these neuronal diseases.
Collapse
Affiliation(s)
- Yukiko Sasazawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Neurology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Shinji Saiki
- Department of Neurology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Neurology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
Abstract
The accidental discovery of PI5P (phosphatidylinositol-5-phosphate) was published 25 years ago, when PIP5K type II (phosphoinositide-4-phosphate 5-kinase) was shown to actually be a 4-kinase that uses PI5P as a substrate to generate PI(4,5)P2. Consequently, PIP5K type II was renamed to PI5P4K, or PIP4K for short, and PI5P became the last of the 7 signaling phosphoinositides to be discovered. Much of what we know about PI5P comes from genetic studies of PIP4K, as the pathways for PI5P synthesis, the downstream targets of PI5P and how PI5P affects cellular function all remain largely enigmatic. Nevertheless, PI5P and PI5P-dependent PI(4,5)P2 synthesis have been clearly implicated in metabolic homeostasis and in diseases such as cancer. Here, we review the past 25 years of PI5P research, with particular emphasis on the impact this small signaling lipid has on human health.
Collapse
Affiliation(s)
- Lucia E. Rameh
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Raymond D. Blind
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
6
|
Abstract
Phosphoinositides (PIs) are phospholipids derived from phosphatidylinositol. PIs are regulated via reversible phosphorylation, which is directed by the opposing actions of PI kinases and phosphatases. PIs constitute a minor fraction of the total cellular lipid pool but play pleiotropic roles in multiple aspects of cell biology. Genetic mutations of PI regulatory enzymes have been identified in rare congenital developmental syndromes, including ciliopathies, and in numerous human diseases, such as cancer and metabolic and neurological disorders. Accordingly, PI regulatory enzymes have been targeted in the design of potential therapeutic interventions for human diseases. Recent advances place PIs as central regulators of membrane dynamics within functionally distinct subcellular compartments. This brief review focuses on the emerging role PIs play in regulating cell signaling within the primary cilium and in directing transfer of molecules at interorganelle membrane contact sites and identifies new roles for PIs in subcellular spaces.
Collapse
Affiliation(s)
- Elizabeth Michele Davies
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Christina Anne Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Harald Alfred Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research. The Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway
| |
Collapse
|
7
|
Daly JL, Danson CM, Lewis PA, Zhao L, Riccardo S, Di Filippo L, Cacchiarelli D, Lee D, Cross SJ, Heesom KJ, Xiong WC, Ballabio A, Edgar JR, Cullen PJ. Multi-omic approach characterises the neuroprotective role of retromer in regulating lysosomal health. Nat Commun 2023; 14:3086. [PMID: 37248224 PMCID: PMC10227043 DOI: 10.1038/s41467-023-38719-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
Retromer controls cellular homeostasis through regulating integral membrane protein sorting and transport and by controlling maturation of the endo-lysosomal network. Retromer dysfunction, which is linked to neurodegenerative disorders including Parkinson's and Alzheimer's diseases, manifests in complex cellular phenotypes, though the precise nature of this dysfunction, and its relation to neurodegeneration, remain unclear. Here, we perform an integrated multi-omics approach to provide precise insight into the impact of Retromer dysfunction on endo-lysosomal health and homeostasis within a human neuroglioma cell model. We quantify widespread changes to the lysosomal proteome, indicative of broad lysosomal dysfunction and inefficient autophagic lysosome reformation, coupled with a reconfigured cell surface proteome and secretome reflective of increased lysosomal exocytosis. Through this global proteomic approach and parallel transcriptomic analysis, we provide a holistic view of Retromer function in regulating lysosomal homeostasis and emphasise its role in neuroprotection.
Collapse
Affiliation(s)
- James L Daly
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, Guy's Hospital, King's College London, SE1 9RT, London, UK.
| | - Chris M Danson
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Philip A Lewis
- Bristol Proteomics Facility, School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, BS8 1TD, Bristol, UK
| | - Lu Zhao
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Sara Riccardo
- Telethon Institute of Genetics and Medicine, Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Next Generation Diagnostic srl, Pozzuoli, Italy
| | - Lucio Di Filippo
- Telethon Institute of Genetics and Medicine, Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Next Generation Diagnostic srl, Pozzuoli, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine, Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
- School for Advanced Studies, University of Naples "Federico II", Naples, Italy
| | - Daehoon Lee
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Stephen J Cross
- Wolfson Bioimaging Facility, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| | - Kate J Heesom
- Bristol Proteomics Facility, School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, BS8 1TD, Bristol, UK
| | - Wen-Cheng Xiong
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
- School for Advanced Studies, University of Naples "Federico II", Naples, Italy
- Department of Molecular and Human Genetics and Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - James R Edgar
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge, UK
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
8
|
Qin Y, Medina MW. Mechanism of the Regulation of Plasma Cholesterol Levels by PI(4,5)P 2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:89-119. [PMID: 36988878 DOI: 10.1007/978-3-031-21547-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Elevated low-density lipoprotein (LDL) cholesterol (LDLc) is one of the most well-established risk factors for cardiovascular disease, while high levels of high-density lipoprotein (HDL) cholesterol (HDLc) have been associated with protection from cardiovascular disease. Cardiovascular disease remains one of the leading causes of death worldwide; thus it is important to understand mechanisms that impact LDLc and HDLc metabolism. In this chapter, we will discuss molecular processes by which phosphatidylinositol-(4,5)-bisphosphate, PI(4,5)P2, is thought to modulate LDLc or HDLc. Section 1 will provide an overview of cholesterol in the circulation, discussing processes that modulate the various forms of lipoproteins (LDL and HDL) carrying cholesterol. Section 2 will describe how a PI(4,5)P2 phosphatase, transmembrane protein 55B (TMEM55B), impacts circulating LDLc levels through its ability to regulate lysosomal decay of the low-density lipoprotein receptor (LDLR), the primary receptor for hepatic LDL uptake. Section 3 will discuss how PI(4,5)P2 interacts with apolipoprotein A-I (apoA1), the key apolipoprotein on HDL. In addition to direct mechanisms of PI(4,5)P2 action on circulating cholesterol, Sect. 4 will review how PI(4,5)P2 may indirectly impact LDLc and HDLc by affecting insulin action. Last, as cholesterol is controlled through intricate negative feedback loops, Sect. 5 will describe how PI(4,5)P2 is regulated by cholesterol.
Collapse
Affiliation(s)
- Yuanyuan Qin
- Department of Pediatrics, Division of Cardiology, University of California, San Francisco, Oakland, CA, USA
| | - Marisa W Medina
- Department of Pediatrics, Division of Cardiology, University of California, San Francisco, Oakland, CA, USA.
| |
Collapse
|
9
|
Gulshan K. Crosstalk Between Cholesterol, ABC Transporters, and PIP2 in Inflammation and Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:353-377. [PMID: 36988888 DOI: 10.1007/978-3-031-21547-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The lowering of plasma low-density lipoprotein cholesterol (LDL-C) is an easily achievable and highly reliable modifiable risk factor for preventing cardiovascular disease (CVD), as validated by the unparalleled success of statins in the last three decades. However, the 2021 American Heart Association (AHA) statistics show a worrying upward trend in CVD deaths, calling into question the widely held belief that statins and available adjuvant therapies can fully resolve the CVD problem. Human biomarker studies have shown that indicators of inflammation, such as human C-reactive protein (hCRP), can serve as a reliable risk predictor for CVD, independent of all traditional risk factors. Oxidized cholesterol mediates chronic inflammation and promotes atherosclerosis, while anti-inflammatory therapies, such as an anti-interleukin-1 beta (anti-IL-1β) antibody, can reduce CVD in humans. Cholesterol removal from artery plaques, via an athero-protective reverse cholesterol transport (RCT) pathway, can dampen inflammation. Phosphatidylinositol 4,5-bisphosphate (PIP2) plays a role in RCT by promoting adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1)-mediated cholesterol efflux from arterial macrophages. Cholesterol crystals activate the nod-like receptor family pyrin domain containing 3 (Nlrp3) inflammasome in advanced atherosclerotic plaques, leading to IL-1β release in a PIP2-dependent fashion. PIP2 thus is a central player in CVD pathogenesis, serving as a critical link between cellular cholesterol levels, ATP-binding cassette (ABC) transporters, and inflammasome-induced IL-1β release.
Collapse
Affiliation(s)
- Kailash Gulshan
- College of Sciences and Health Professions, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA.
| |
Collapse
|
10
|
Direct control of lysosomal catabolic activity by mTORC1 through regulation of V-ATPase assembly. Nat Commun 2022; 13:4848. [PMID: 35977928 PMCID: PMC9385660 DOI: 10.1038/s41467-022-32515-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 08/03/2022] [Indexed: 12/15/2022] Open
Abstract
Mammalian cells can acquire exogenous amino acids through endocytosis and lysosomal catabolism of extracellular proteins. In amino acid-replete environments, nutritional utilization of extracellular proteins is suppressed by the amino acid sensor mechanistic target of rapamycin complex 1 (mTORC1) through an unknown process. Here, we show that mTORC1 blocks lysosomal degradation of extracellular proteins by suppressing V-ATPase-mediated acidification of lysosomes. When mTORC1 is active, peripheral V-ATPase V1 domains reside in the cytosol where they are stabilized by association with the chaperonin TRiC. Consequently, most lysosomes display low catabolic activity. When mTORC1 activity declines, V-ATPase V1 domains move to membrane-integral V-ATPase Vo domains at lysosomes to assemble active proton pumps. The resulting drop in luminal pH increases protease activity and degradation of protein contents throughout the lysosomal population. These results uncover a principle by which cells rapidly respond to changes in their nutrient environment by mobilizing the latent catabolic capacity of lysosomes. mTORC1 blocks lysosomal nutrient generation. Here, the authors show that mTORC1 inactivation triggers V-ATPase assembly, which rapidly initiates lysosomal acidification and degradation of protein contents throughout the lysosomal population.
Collapse
|
11
|
Ceyhan Y, Zhang M, Sandoval CG, Agoulnik AI, Agoulnik IU. Expression pattern and the roles of phosphatidylinositol phosphatases in testis. Biol Reprod 2022; 107:902-915. [PMID: 35766372 DOI: 10.1093/biolre/ioac132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphoinositides (PIs) are relatively rare lipid components of the cellular membranes. Their homeostasis is tightly controlled by specific PI kinases and phosphatases. PIs play essential roles in cellular signaling, cytoskeletal organization, and secretory processes in various diseases and normal physiology. Gene targeting experiments strongly suggest that in mice with deficiency of several PI phosphatases such as Pten, Mtmrs, Inpp4b, and Inpp5b, spermatogenesis is affected, resulting in partial or complete infertility. Similarly, in men, loss of several of the PIP phosphatases is observed in infertility characterized by the lack of mature sperm. Using available gene expression databases, we compare expression of known PI phosphatases in various testicular cell types, infertility patients, and mouse age-dependent testicular gene expression, and discuss their potential roles in testis physiology and spermatogenesis.
Collapse
Affiliation(s)
- Yasemin Ceyhan
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Manqi Zhang
- Department of Medicine, Duke University, Durham, NC, USA
| | - Carlos G Sandoval
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,New York University Grossman School of Medicine, New York, NY, USA
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Irina U Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Rudnik S, Heybrock S, Saftig P, Damme M. S-palmitoylation determines TMEM55B-dependent positioning of lysosomes. J Cell Sci 2022; 135:jcs258566. [PMID: 34350967 DOI: 10.1242/jcs.258566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/23/2021] [Indexed: 11/20/2022] Open
Abstract
The spatiotemporal cellular distribution of lysosomes depends on active transport mainly driven by microtubule motors such as kinesins and dynein. Different protein complexes attach these molecular motors to their vesicular cargo. TMEM55B (also known as PIP4P1), as an integral lysosomal membrane protein, is a component of such a complex that mediates the retrograde transport of lysosomes by establishing interactions with the cytosolic scaffold protein JIP4 (also known as SPAG9) and dynein-dynactin. Here, we show that TMEM55B and its paralog TMEM55A (PIP4P2) are S-palmitoylated proteins that are lipidated at multiple cysteine residues. Mutation of all cysteines in TMEM55B prevents S-palmitoylation and causes retention of the mutated protein in the Golgi. Consequently, non-palmitoylated TMEM55B is no longer able to modulate lysosomal positioning and the perinuclear clustering of lysosomes. Additional mutagenesis of the dileucine-based lysosomal sorting motif in non-palmitoylated TMEM55B leads to partial missorting to the plasma membrane instead of retention in the Golgi, implicating a direct effect of S-palmitoylation on the adaptor protein-dependent sorting of TMEM55B. Our data suggest a critical role for S-palmitoylation in the trafficking of TMEM55B and TMEM55B-dependent lysosomal positioning.
Collapse
Affiliation(s)
- Sönke Rudnik
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Saskia Heybrock
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Markus Damme
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| |
Collapse
|
13
|
Wang Z, Lv J, Yu P, Qu Y, Zhou Y, Zhou L, Zhu Q, Li S, Song J, Deng W, Gao R, Liu Y, Liu J, Tong WM, Qin C, Huang B. SARS-CoV-2 treatment effects induced by ACE2-expressing microparticles are explained by the oxidized cholesterol-increased endosomal pH of alveolar macrophages. Cell Mol Immunol 2022; 19:210-221. [PMID: 34983944 PMCID: PMC8724656 DOI: 10.1038/s41423-021-00813-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/28/2021] [Indexed: 01/02/2023] Open
Abstract
Exploring the cross-talk between the immune system and advanced biomaterials to treat SARS-CoV-2 infection is a promising strategy. Here, we show that ACE2-overexpressing A549 cell-derived microparticles (AO-MPs) are a potential therapeutic agent against SARS-CoV-2 infection. Intranasally administered AO-MPs dexterously navigate the anatomical and biological features of the lungs to enter the alveoli and are taken up by alveolar macrophages (AMs). Then, AO-MPs increase the endosomal pH but decrease the lysosomal pH in AMs, thus escorting bound SARS-CoV-2 from phago-endosomes to lysosomes for degradation. This pH regulation is attributable to oxidized cholesterol, which is enriched in AO-MPs and translocated to endosomal membranes, thus interfering with proton pumps and impairing endosomal acidification. In addition to promoting viral degradation, AO-MPs also inhibit the proinflammatory phenotype of AMs, leading to increased treatment efficacy in a SARS-CoV-2-infected mouse model without side effects. These findings highlight the potential use of AO-MPs to treat SARS-CoV-2-infected patients and showcase the feasibility of MP therapies for combatting emerging respiratory viruses in the future.
Collapse
Affiliation(s)
- Zhenfeng Wang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Jiadi Lv
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Pin Yu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yajin Qu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yabo Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Li Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Qiangqiang Zhu
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Shunshun Li
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, CAMS and Peking Union Medical College, Beijing, China
| | - Wei Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Ran Gao
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yuying Liu
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences, CAMS and Peking Union Medical College, Beijing, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China.
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China.
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China.
| |
Collapse
|
14
|
Maternal Under- and Over-Nutrition during Gestation Causes Islet Hypertrophy and Sex-Specific Changes to Pancreas DNA Methylation in Fetal Sheep. Animals (Basel) 2021; 11:ani11092531. [PMID: 34573497 PMCID: PMC8466738 DOI: 10.3390/ani11092531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 01/18/2023] Open
Abstract
The mechanisms by which fetal programming predisposes offspring to reduced β-cell function later in life are poorly understood. We hypothesized that maternal under- and over-nutrition during gestation would negatively affect offspring pancreas development and alter DNA methylation patterns. Pregnant ewes (n = 78) were fed 100, 60, or 140% of NRC requirements beginning at d 30.2 ± 0.2 of gestation. The fetuses are referred to as CON, RES, and OVER, respectively. Fetal pancreas tissue was collected at d 90 or 135 of gestation or within 24 h of birth. Tissue was preserved for histological (n = 8 to 9 offspring per treatment per time point) and DNA methylation analyses (n = 3 to 4 fetuses per treatment per sex). At d 135, OVER exhibited an increased islet size, reduced islet number, and greater insulin positive area compared with CON (p ≤ 0.03). An increased islet size was also observed at d 135 in RES (p ≤ 0.03) compared with CON. Cellular proliferation was reduced at birth in OVER vs. CON (p = 0.01). In the RES vs. CON females, 62% of the differentially methylated regions (DMRs) were hypomethylated (p ≤ 0.001). In the RES vs. CON males, 93% of the DMRs were hypermethylated (p ≤ 0.001). In OVER, 66 and 80% of the DMRs were hypermethylated in the female and male offspring compared with CON (p ≤ 0.001). In conclusion, changes to maternal diet during pregnancy affects the islet hypertrophy and cellular proliferation of the offspring at early post-natal time points. Additionally, changes in DNA methylation patterns appear to be in a diet-specific and sex-dependent manner.
Collapse
|
15
|
Araki M, Kontani K. Regulation of lysosomal positioning via TMEM55B phosphorylation. J Biochem 2021; 169:507-509. [PMID: 33537719 DOI: 10.1093/jb/mvab013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/30/2020] [Indexed: 01/15/2023] Open
Abstract
Lysosomes are dynamic organelles that are transported along microtubules bidirectionally via kinesin and dynein motor proteins. Lysosomal positioning, which is determined by the balance of the bidirectional lysosomal movement, changes under various conditions and affects lysosomal functions such as autophagy and antigen presentation. A recent study by Takemasu et al. (Phosphorylation of TMEM55B by Erk/MAPK regulates lysosomal positioning. J. Biochem. 2019; 166:175-185) has shown that phosphorylation of the transmembrane protein TMEM55B is involved in the retrograde lysosomal trafficking towards the perinuclear region. They found that TMEM55B is phosphorylated upon stimulation with various ligands and that Erk/MAPK mediates the TMEM55B phosphorylation. They have also revealed that a phosphorylation mimic mutant of TMEM55B enhances perinuclear lysosomal clustering compared to the wild-type TMEM55B. These findings suggest that TMEM55B phosphorylation by Erk/MAPK is responsible for regulating lysosomal positioning in response to external stimuli.
Collapse
Affiliation(s)
- Makoto Araki
- Department of Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Kenji Kontani
- Department of Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
16
|
Liu K, Kong L, Graham DB, Carey KL, Xavier RJ. SAC1 regulates autophagosomal phosphatidylinositol-4-phosphate for xenophagy-directed bacterial clearance. Cell Rep 2021; 36:109434. [PMID: 34320354 PMCID: PMC8327279 DOI: 10.1016/j.celrep.2021.109434] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/21/2020] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Phosphoinositides are important molecules in lipid signaling, membrane identity, and trafficking that are spatiotemporally controlled by factors from both mammalian cells and intracellular pathogens. Here, using small interfering RNA (siRNA) directed against phosphoinositide kinases and phosphatases, we screen for regulators of the host innate defense response to intracellular bacterial replication. We identify SAC1, a transmembrane phosphoinositide phosphatase, as an essential regulator of xenophagy. Depletion or inactivation of SAC1 compromises fusion between Salmonella-containing autophagosomes and lysosomes, leading to increased bacterial replication. Mechanistically, the loss of SAC1 results in aberrant accumulation of phosphatidylinositol-4-phosphate [PI(4)P] on Salmonella-containing autophagosomes, thus facilitating recruitment of SteA, a PI(4)P-binding Salmonella effector protein, which impedes lysosomal fusion. Replication of Salmonella lacking SteA is suppressed by SAC-1-deficient cells, however, demonstrating bacterial adaptation to xenophagy. Our findings uncover a paradigm in which a host protein regulates the level of its substrate and impairs the function of a bacterial effector during xenophagy.
Collapse
Affiliation(s)
- Kai Liu
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingjia Kong
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel B Graham
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Ramnik J Xavier
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
17
|
Seibert M, Kurrle N, Schnütgen F, Serve H. Amino acid sensory complex proteins in mTORC1 and macroautophagy regulation. Matrix Biol 2021; 100-101:65-83. [DOI: 10.1016/j.matbio.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/02/2021] [Accepted: 01/02/2021] [Indexed: 12/15/2022]
|
18
|
Donkel SJ, Portilla Fernández E, Ahmad S, Rivadeneira F, van Rooij FJA, Ikram MA, Leebeek FWG, de Maat MPM, Ghanbari M. Common and Rare Variants Genetic Association Analysis of Circulating Neutrophil Extracellular Traps. Front Immunol 2021; 12:615527. [PMID: 33717105 PMCID: PMC7944992 DOI: 10.3389/fimmu.2021.615527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
Introduction Neutrophils contribute to host defense through different mechanisms, including the formation of neutrophil extracellular traps (NETs). The genetic background and underlying mechanisms contributing to NET formation remain unclear. Materials and Methods We performed a genome-wide association study (GWAS) and exome-sequencing analysis to identify common and rare genetic variants associated with plasma myeloperoxidase (MPO)-DNA complex levels, a biomarker for NETs, in the population-based Rotterdam Study cohort. GWAS was performed using haplotype reference consortium(HRC)-imputed genotypes of common variants in 3,514 individuals from the first and 2,076 individuals from the second cohort of the Rotterdam Study. We additionally performed exome-sequencing analysis in 960 individuals to investigate rare variants in candidate genes. Results The GWAS yielded suggestive associations (p-value < 5.0 × 10-6) of SNPs annotated to four genes. In the exome-sequencing analysis, a variant in TMPRSS13 gene was significantly associated with MPO-DNA complex levels (p-value < 3.06×10-8). Moreover, gene-based analysis showed ten genes (OR10H1, RP11-461L13.5, RP11-24B19.4, RP11-461L13.3, KHDRBS1, ZNF200, RP11-395I6.1, RP11-696P8.2, RGPD1, AC007036.5) to be associated with MPO-DNA complex levels (p-value between 4.48 × 10-9 and 1.05 × 10-6). Pathway analysis of the identified genes showed their involvement in cellular development, molecular transport, RNA trafficking, cell-to-cell signaling and interaction, cellular growth and proliferation. Cancer was the top disease linked to the NET-associated genes. Conclusion In this first GWAS and exome-sequencing analysis of NETs levels, we found several genes that were associated with NETs. The precise mechanism of how these genes may contribute to neutrophil function or the formation of NETs remains unclear and should be further investigated in experimental studies.
Collapse
Affiliation(s)
- Samantha J Donkel
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Shahzad Ahmad
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands.,Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Frank J A van Rooij
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Frank W G Leebeek
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Moniek P M de Maat
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
19
|
Escalera-Balsera A, Roman-Naranjo P, Lopez-Escamez JA. Systematic Review of Sequencing Studies and Gene Expression Profiling in Familial Meniere Disease. Genes (Basel) 2020; 11:E1414. [PMID: 33260921 PMCID: PMC7761472 DOI: 10.3390/genes11121414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Familial Meniere Disease (FMD) is a rare inner ear disorder characterized by episodic vertigo associated with sensorineural hearing loss, tinnitus and/or aural fullness. We conducted a systematic review to find sequencing studies segregating rare variants in FMD to obtain evidence to support candidate genes for MD. After evaluating the quality of the retrieved records, eight studies were selected to carry out a quantitative synthesis. These articles described 20 single nucleotide variants (SNVs) in 11 genes (FAM136A, DTNA, PRKCB, COCH, DPT, SEMA3D, STRC, HMX2, TMEM55B, OTOG and LSAMP), most of them in singular families-the exception being the OTOG gene. Furthermore, we analyzed the pathogenicity of each SNV and compared its allelic frequency with reference datasets to evaluate its role in the pathogenesis of FMD. By retrieving gene expression data in these genes from different databases, we could classify them according to their gene expression in neural or inner ear tissues. Finally, we evaluated the pattern of inheritance to conclude which genes show an autosomal dominant (AD) or autosomal recessive (AR) inheritance in FMD.
Collapse
Affiliation(s)
- Alba Escalera-Balsera
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, 18016 Granada, Spain; (A.E.-B.); (P.R.-N.)
| | - Pablo Roman-Naranjo
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, 18016 Granada, Spain; (A.E.-B.); (P.R.-N.)
| | - Jose Antonio Lopez-Escamez
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, 18016 Granada, Spain; (A.E.-B.); (P.R.-N.)
- Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
- Department of Surgery, Division of Otolaryngology, Universidad de Granada, 18016 Granada, Spain
| |
Collapse
|
20
|
Ramaian Santhaseela A, Jayavelu T. Does mTORC1 inhibit autophagy at dual stages?: A possible role of mTORC1 in late-stage autophagy inhibition in addition to its known early-stage autophagy inhibition. Bioessays 2020; 43:e2000187. [PMID: 33165974 DOI: 10.1002/bies.202000187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 11/09/2022]
Abstract
Extensive studies have attributed the lysosomal localization of the mechanistic target of rapamycin complex 1 (mTORC1) during its activation. However, the exact biological significance of this lysosomal localization of mTORC1 remains ill-defined. Interestingly, findings have shown that localization of the lysosome itself is altered under conditions influencing mTORC1 activity. In this perspective, we hypothesize that the localization of mTORC1 and lysosome could be interconnected in a way that manifests regulation of autophagy that is already under progression at the time of mTORC1 activation. This provides a new possibility for autophagy regulation whose complete mechanistic insights remain to be determined.
Collapse
|
21
|
Qin Y, Ting F, Kim MJ, Strelnikov J, Harmon J, Gao F, Dose A, Teng BB, Alipour MA, Yao Z, Crooke R, Krauss RM, Medina MW. Phosphatidylinositol-(4,5)-Bisphosphate Regulates Plasma Cholesterol Through LDL (Low-Density Lipoprotein) Receptor Lysosomal Degradation. Arterioscler Thromb Vasc Biol 2020; 40:1311-1324. [PMID: 32188273 DOI: 10.1161/atvbaha.120.314033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE TMEM55B (transmembrane protein 55B) is a phosphatidylinositol-(4,5)-bisphosphate (PI[4,5]P2) phosphatase that regulates cellular cholesterol, modulates LDLR (low-density lipoprotein receptor) decay, and lysosome function. We tested the effects of Tmem55b knockdown on plasma lipids in mice and assessed the roles of LDLR lysosomal degradation and change in (PI[4,5]P2) in mediating these effects. Approach and Results: Western diet-fed C57BL/6J mice were treated with antisense oligonucleotides against Tmem55b or a nontargeting control for 3 to 4 weeks. Hepatic Tmem55b transcript and protein levels were reduced by ≈70%, and plasma non-HDL (high-density lipoprotein) cholesterol was increased ≈1.8-fold (P<0.0001). Immunoblot analysis of fast protein liquid chromatography (FPLC) fractions revealed enrichment of ApoE-containing particles in the LDL size range. In contrast, Tmem55b knockdown had no effect on plasma cholesterol in Ldlr-/- mice. In primary hepatocytes and liver tissues from Tmem55b knockdown mice, there was decreased LDLR protein. In the hepatocytes, there was increased lysosome staining and increased LDLR-lysosome colocalization. Impairment of lysosome function (incubation with NH4Cl or knockdown of the lysosomal proteins LAMP1 or RAB7) abolished the effect of TMEM55B knockdown on LDLR in HepG2 (human hepatoma) cells. Colocalization of the recycling endosome marker RAB11 (Ras-related protein 11) with LDLR in HepG2 cells was reduced by 50% upon TMEM55B knockdown. Finally, knockdown increased hepatic PI(4,5)P2 levels in vivo and in HepG2 cells, while TMEM55B overexpression in vitro decreased PI(4,5)P2. TMEM55B knockdown decreased, whereas overexpression increased, LDL uptake in HepG2 cells. Notably, the TMEM55B overexpression effect was reversed by incubation with PI(4,5)P2. Conclusions: These findings indicate a role for TMEM55B in regulating plasma cholesterol levels by affecting PI(4,5)P2-mediated LDLR lysosomal degradation.
Collapse
Affiliation(s)
- Yuanyuan Qin
- From the Department of Pediatrics, University of California San Francisco, Oakland (Y.Q., F.T., R.M.K., M.W.M.)
| | - Flora Ting
- From the Department of Pediatrics, University of California San Francisco, Oakland (Y.Q., F.T., R.M.K., M.W.M.)
| | - Mee J Kim
- Children's Hospital Oakland Research Institute, CA (M.J.K., J.S., J.H., F.G., A.D.)
| | - Jacob Strelnikov
- Children's Hospital Oakland Research Institute, CA (M.J.K., J.S., J.H., F.G., A.D.)
| | - Joseph Harmon
- Children's Hospital Oakland Research Institute, CA (M.J.K., J.S., J.H., F.G., A.D.)
| | - Feng Gao
- Children's Hospital Oakland Research Institute, CA (M.J.K., J.S., J.H., F.G., A.D.)
| | - Andrea Dose
- Children's Hospital Oakland Research Institute, CA (M.J.K., J.S., J.H., F.G., A.D.)
| | - Ba-Bie Teng
- Center for Human Genetics, University of Texas Health Science Center, Houston (B.-B.T.)
| | - Mohsen Amir Alipour
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ontario, Canada (M.A.A., Z.Y.)
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ontario, Canada (M.A.A., Z.Y.)
| | | | - Ronald M Krauss
- From the Department of Pediatrics, University of California San Francisco, Oakland (Y.Q., F.T., R.M.K., M.W.M.)
| | - Marisa W Medina
- From the Department of Pediatrics, University of California San Francisco, Oakland (Y.Q., F.T., R.M.K., M.W.M.)
| |
Collapse
|
22
|
Inpanathan S, Botelho RJ. The Lysosome Signaling Platform: Adapting With the Times. Front Cell Dev Biol 2019; 7:113. [PMID: 31281815 PMCID: PMC6595708 DOI: 10.3389/fcell.2019.00113] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
Lysosomes are the terminal degradative compartment of autophagy, endocytosis and phagocytosis. What once was viewed as a simple acidic organelle in charge of macromolecular digestion has emerged as a dynamic organelle capable of integrating cellular signals and producing signal outputs. In this review, we focus on the concept that the lysosome surface serves as a platform to assemble major signaling hubs like mTORC1, AMPK, GSK3 and the inflammasome. These molecular assemblies integrate and facilitate cross-talk between signals such as amino acid and energy levels, membrane damage and infection, and ultimately enable responses such as autophagy, cell growth, membrane repair and microbe clearance. In particular, we review how molecular machinery like the vacuolar-ATPase proton pump, sestrins, the GATOR complexes, and the Ragulator, modulate mTORC1, AMPK, GSK3 and inflammation. We then elaborate how these signals control autophagy initiation and resolution, TFEB-mediated lysosome adaptation, lysosome remodeling, antigen presentation, inflammation, membrane damage repair and clearance. Overall, by being at the cross-roads for several membrane pathways, lysosomes have emerged as the ideal surveillance compartment to sense, integrate and elicit cellular behavior and adaptation in response to changing environmental and cellular conditions.
Collapse
Affiliation(s)
- Subothan Inpanathan
- Department of Chemistry and Biology, Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology, Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
23
|
Takemasu S, Nigorikawa K, Yamada M, Tsurumi G, Kofuji S, Takasuga S, Hazeki K. Phosphorylation of TMEM55B by Erk/MAPK regulates lysosomal positioning. J Biochem 2019; 166:175-185. [DOI: 10.1093/jb/mvz026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022] Open
Abstract
Abstract
TMEM55B is first identified as phosphatidylinositol-4,5-P24-phosphatases (PtdIns-4,5-P24-phosphatases) that catalyse dephosphorylation of PtdIns-4,5-P2 to PtdIns-5-P. We demonstrate for the first time that TMEM55B is phosphorylated by Erk/MAPK and that this mechanism participates in regulation of lysosomal clustering. Exposure of RAW264.7 macrophages to various stimuli induces phosphorylation of TMEM55B on Ser76 and Ser169, sites corresponding to consensus sequences (PX(S/T)P) for phosphorylation by MAPK. Of these stimuli, Toll-like receptor ligands most strongly induce TMEM55B phosphorylation, and this is blocked by the MEK1/2 inhibitor U0126. However, phosphorylation does not impact intrinsic phosphatase activity of TMEM55B. TMEM55B has recently been implicated in starvation induced lysosomal translocation. Amino acid starvation induces perinuclear lamp1 clustering in RAW264.7 macrophages, which was attenuated by shRNA-mediated knock-down or CRISPR/Cas9-mediated knock-out of TMEM55B. Cells exposed to U0126 also exhibit attenuated lamp1 clustering. Overexpression of TMEM55B but not TMEM55A notably enhances lamp1 clustering, with TMEM55B mutants (lacking phosphorylation sites or mimicking the phosphorylated state) exhibiting lower and higher efficacies (respectively) than wild-type TMEM55B. Collectively, results suggest that phosphorylation of TMEM55B by Erk/MAPK impacts lysosomal dynamics.
Collapse
Affiliation(s)
- Shinya Takemasu
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kiyomi Nigorikawa
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miho Yamada
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Go Tsurumi
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Satoshi Kofuji
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shunsuke Takasuga
- Department of Pathology and Immunology, Akita University School of Medicine, Akita, Japan
| | - Kaoru Hazeki
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
24
|
Abstract
Background The protein kinase Target Of Rapamycin (TOR) is a nexus for the regulation of eukaryotic cell growth. TOR assembles into one of two distinct signalling complexes, TOR complex 1 (TORC1) and TORC2 (mTORC1/2 in mammals), with a set of largely non-overlapping protein partners. (m)TORC1 activation occurs in response to a series of stimuli relevant to cell growth, including nutrient availability, growth factor signals and stress, and regulates much of the cell's biosynthetic activity, from proteins to lipids, and recycling through autophagy. mTORC1 regulation is of great therapeutic significance, since in humans many of these signalling complexes, alongside subunits of mTORC1 itself, are implicated in a wide variety of pathophysiologies, including multiple types of cancer, neurological disorders, neurodegenerative diseases and metabolic disorders including diabetes. Methodology Recent years have seen numerous structures determined of (m)TOR, which have provided mechanistic insight into (m)TORC1 activation in particular, however the integration of cellular signals occurs upstream of the kinase and remains incompletely understood. Here we have collected and analysed in detail as many as possible of the molecular and structural studies which have shed light on (m)TORC1 repression, activation and signal integration. Conclusions A molecular understanding of this signal integration pathway is required to understand how (m)TORC1 activation is reconciled with the many diverse and contradictory stimuli affecting cell growth. We discuss the current level of molecular understanding of the upstream components of the (m)TORC1 signalling pathway, recent progress on this key biochemical frontier, and the future studies necessary to establish a mechanistic understanding of this master-switch for eukaryotic cell growth.
Collapse
Affiliation(s)
- Kailash Ramlaul
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| | - Christopher H S Aylett
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| |
Collapse
|