1
|
Deng X, Yao Q, Horvath A, Jiang Z, Zhao J, Fischer T, Sugiyama T. The fission yeast ortholog of Coilin, Mug174, forms Cajal body-like nuclear condensates and is essential for cellular quiescence. Nucleic Acids Res 2024; 52:9174-9192. [PMID: 38828770 PMCID: PMC11347179 DOI: 10.1093/nar/gkae463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
The Cajal body, a nuclear condensate, is crucial for ribonucleoprotein assembly, including small nuclear RNPs (snRNPs). While Coilin has been identified as an integral component of Cajal bodies, its exact function remains unclear. Moreover, no Coilin ortholog has been found in unicellular organisms to date. This study unveils Mug174 (Meiosis-upregulated gene 174) as the Coilin ortholog in the fission yeast Schizosaccharomyces pombe. Mug174 forms phase-separated condensates in vitro and is often associated with the nucleolus and the cleavage body in vivo. The generation of Mug174 foci relies on the trimethylguanosine (TMG) synthase Tgs1. Moreover, Mug174 interacts with Tgs1 and U snRNAs. Deletion of the mug174+ gene in S. pombe causes diverse pleiotropic phenotypes, encompassing defects in vegetative growth, meiosis, pre-mRNA splicing, TMG capping of U snRNAs, and chromosome segregation. In addition, we identified weak homology between Mug174 and human Coilin. Notably, human Coilin expressed in fission yeast colocalizes with Mug174. Critically, Mug174 is indispensable for the maintenance of and transition from cellular quiescence. These findings highlight the Coilin ortholog in fission yeast and suggest that the Cajal body is implicated in cellular quiescence, thereby preventing human diseases.
Collapse
Affiliation(s)
- Xiaoling Deng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qinglian Yao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Attila Horvath
- The John Curtin School of Medical Research, The Australian National University, Canberra 2601, Australia
| | - Ziling Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Junjie Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tamás Fischer
- The John Curtin School of Medical Research, The Australian National University, Canberra 2601, Australia
| | - Tomoyasu Sugiyama
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
2
|
Mori M, Sato M, Takahata S, Kajitani T, Murakami Y. A zinc-finger protein Moc3 functions as a transcription activator to promote RNAi-dependent constitutive heterochromatin establishment in fission yeast. Genes Cells 2024; 29:471-485. [PMID: 38629626 DOI: 10.1111/gtc.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 06/11/2024]
Abstract
In fission yeast, Schizosaccharomyces pombe, constitutive heterochromatin defined by methylation of histone H3 lysine 9 (H3K9me) and its binding protein Swi6/HP1 localizes at the telomere, centromere, and mating-type loci. These loci contain DNA sequences called dg and dh, and the RNA interference (RNAi)-dependent system establishes and maintains heterochromatin at dg/dh. Bi-directional transcription at dg/dh induced by RNA polymerase II is critical in RNAi-dependent heterochromatin formation because the transcribed RNAs provide substrates for siRNA synthesis and a platform for assembling RNAi factors. However, a regulator of dg/dh transcription during the establishment of heterochromatin is not known. Here, we found that a zinc-finger protein Moc3 localizes dh and activates dh-forward transcription in its zinc-finger-dependent manner when heterochromatin structure or heterochromatin-dependent silencing is compromised. However, Moc3 does not localize at normal heterochromatin and does not activate the dh-forward transcription. Notably, the loss of Moc3 caused a retarded heterochromatin establishment, showing that Moc3-dependent dh-forward transcription is critical for RNAi-dependent heterochromatin establishment. Therefore, Moc3 is a transcriptional activator that induces RNAi to establish heterochromatin.
Collapse
Affiliation(s)
- Miyuki Mori
- Laboratory of Bioorganic Chemistry, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Michiaki Sato
- Laboratory of Bioorganic Chemistry, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Shinya Takahata
- Laboratory of Bioorganic Chemistry, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Takuya Kajitani
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan
- Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Yota Murakami
- Laboratory of Bioorganic Chemistry, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
- Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Siena LA, Michaud C, Selles B, Vega JM, Pessino SC, Ingouff M, Ortiz JPA, Leblanc O. TRIMETHYLGUANOSINE SYNTHASE1 mutations decanalize female germline development in Arabidopsis. THE NEW PHYTOLOGIST 2023; 240:597-612. [PMID: 37548040 DOI: 10.1111/nph.19179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023]
Abstract
Here, we report the characterization of a plant RNA methyltransferase, orthologous to yeast trimethylguanosine synthase1 (Tgs1p) and whose downregulation was associated with apomixis in Paspalum grasses. Using phylogenetic analyses and yeast complementation, we determined that land plant genomes all encode a conserved, specific TGS1 protein. Next, we studied the role of TGS1 in female reproduction using reporter lines and loss-of-function mutants in Arabidopsis thaliana. pAtTGS1:AtTGS1 reporters showed a dynamic expression pattern. They were highly active in the placenta and ovule primordia at emergence but, subsequently, showed weak signals in the nucellus. Although expressed throughout gametophyte development, activity became restricted to the female gamete and was also detected after fertilization during embryogenesis. TGS1 depletion altered the specification of the precursor cells that give rise to the female gametophytic generation and to the sporophyte, resulting in the formation of a functional aposporous-like lineage. Our results indicate that TGS1 participates in the mechanisms restricting cell fate acquisition to a single cell at critical transitions throughout the female reproductive lineage and, thus, expand our current knowledge of the mechanisms governing female reproductive fate in plants.
Collapse
Affiliation(s)
- Lorena A Siena
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | | | - Benjamin Selles
- DIADE, Univ Montpellier, IRD, CIRAD, 34394, Montpellier, France
| | - Juan Manuel Vega
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Silvina C Pessino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Mathieu Ingouff
- DIADE, Univ Montpellier, IRD, CIRAD, 34394, Montpellier, France
| | - Juan Pablo A Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Olivier Leblanc
- DIADE, Univ Montpellier, IRD, CIRAD, 34394, Montpellier, France
| |
Collapse
|
4
|
Spotting the Targets of the Apospory Controller TGS1 in Paspalum notatum. PLANTS 2022; 11:plants11151929. [PMID: 35893633 PMCID: PMC9332697 DOI: 10.3390/plants11151929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
Sexuality and apomixis are interconnected plant reproductive routes possibly behaving as polyphenic traits under the influence of the environment. In the subtropical grass Paspalum notatum, one of the controllers of apospory, a main component of gametophytic apomixis reproduction, is TRIMETHYLGUANOSINE SYNTHASE 1 (TGS1), a multifunctional gene previously associated with RNA cleavage regulation (including mRNA splicing as well as rRNA and miRNA processing), transcriptional modulation and the establishment of heterochromatin. In particular, the downregulation of TGS1 induces a sexuality decline and the emergence of aposporous-like embryo sacs. The present work was aimed at identifying TGS1 target RNAs expressed during reproductive development of Paspalum notatum. First, we mined available RNA databases originated from spikelets of sexual and apomictic plants, which naturally display a contrasting TGS1 representation, to identify differentially expressed mRNA splice variants and miRNAs. Then, the role of TGS1 in the generation of these particular molecules was investigated in antisense tgs1 sexual lines. We found that CHLOROPHYLL A-B BINDING PROTEIN 1B-21 (LHC Ib-21, a component of the chloroplast light harvesting complex), QUI-GON JINN (QGJ, encoding a MAP3K previously associated with apomixis) and miR2275 (a meiotic 24-nt phasi-RNAs producer) are directly or indirectly targeted by TGS1. Our results point to a coordinated control exercised by signal transduction and siRNA machineries to induce the transition from sexuality to apomixis.
Collapse
|