1
|
Zeng L, Gomez Mendez MF, Guo J, Jiang J, Zhang B, Chen H, Le B, Ke H, Dehesh K. Activation of stress-response genes by retrograde signaling-mediated destabilization of nuclear importin IMPα-9 and its interactor TPR2. MOLECULAR PLANT 2024; 17:884-899. [PMID: 38693693 DOI: 10.1016/j.molp.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Stress-induced retrograde signal transmission from the plastids to the nucleus has long puzzled plant biologists. To address this, we performed a suppressor screen of the ceh1 mutant, which contains elevated 2-C-methyl-d-erythritol-2,4-cyclopyrophosphate (MEcPP) levels, and identified the gain-of-function mutant impα-9, which shows reversed dwarfism and suppressed expression of stress-response genes in the ceh1 background despite heightened MEcPP. Subsequent genetic and biochemical analyses established that the accumulation of MEcPP initiates an upsurge in Arabidopsis SKP1-like 1 (ASK1) abundance, a pivotal component in the proteasome degradation pathway. This increase in ASK1 prompts the degradation of IMPα-9. Moreover, we uncovered a protein-protein interaction between IMPα-9 and TPR2, a transcriptional co-suppressor and found that a reduction in IMPα-9 levels coincides with a decrease in TPR2 abundance. Significantly, the interaction between IMPα-9 and TPR2 was disrupted in impα-9 mutants, highlighting the critical role of a single amino acid alteration in maintaining their association. Disruption of their interaction results in the reversal of MEcPP-associated phenotypes. Chromatin immunoprecipitation coupled with sequencing analyses revealed that TPR2 binds globally to stress-response genes and suggested that IMPα-9 associates with the chromatin. They function together to suppress the expression of stress-response genes under normal conditions, but this suppression is alleviated in response to stress through the degradation of the suppressing machinery. The biological relevance of our discoveries was validated under high light stress, marked by MEcPP accumulation, elevated ASK1 levels, IMPα-9 degredation, reduced TPR2 abundance, and subsequent activation of a network of stress-response genes. In summary, our study collectively unveils fresh insights into plant adaptive mechanisms, highlighting intricate interactions among retrograde signaling, the proteasome, and nuclear transport machinery.
Collapse
Affiliation(s)
- Liping Zeng
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Maria Fernanda Gomez Mendez
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jingzhe Guo
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jishan Jiang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Bailong Zhang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA; School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Hao Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Brandon Le
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Haiyan Ke
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
2
|
Navarrete-López P, Maroto M, Pericuesta E, Fernández-González R, Lombó M, Ramos-Ibeas P, Gutiérrez-Adán A. Loss of the importin Kpna2 causes infertility in male mice by disrupting the translocation of testis-specific transcription factors. iScience 2023; 26:107134. [PMID: 37456838 PMCID: PMC10338237 DOI: 10.1016/j.isci.2023.107134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/16/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Karyopherins mediate the movement between the nucleus and cytoplasm of specific proteins in diverse cellular processes. Through a loss-of-function approach, we here examine the role of Karyopherin Subunit Alpha 2 (Kpna2) in spermatogenesis. Knockout male mice exhibited reduced body size and sperm motility, increased sperm abnormalities, and led to the dysregulation of testis gene expression and ultimately to infertility. Impaired mRNA expression mainly affected clusters of genes expressed in spermatids and spermatocytes. Downregulated genes included a set of genes that participate in cell adhesion and extracellular matrix (ECM) organization. We detected both the enrichment of some transcription factors that bind to regions around transcription start sites of downregulated genes and the impaired transport of specific factors to the nucleus of spermatid cells. We propose that Kpna2 is essential in the seminiferous tubules for promoting the translocation of testis-specific transcription factors that control the expression of genes related to ECM organization.
Collapse
Affiliation(s)
| | - María Maroto
- Department of Animal Reproduction, INIA-CSIC, 28040 Madrid, Spain
| | - Eva Pericuesta
- Department of Animal Reproduction, INIA-CSIC, 28040 Madrid, Spain
| | | | - Marta Lombó
- Department of Animal Reproduction, INIA-CSIC, 28040 Madrid, Spain
| | | | | |
Collapse
|
3
|
Jibiki K, Kodama TS, Yasuhara N. Importin alpha family NAAT/IBB domain: Functions of a pleiotropic long chameleon sequence. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:175-209. [PMID: 36858734 DOI: 10.1016/bs.apcsb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nuclear transport is essential for eukaryotic cell survival and regulates the movement of functional molecules in and out of the nucleus via the nuclear pore. Transport is facilitated by protein-protein interactions between cargo and transport receptors, which contribute to the expression and regulation of downstream genetic information. This chapter focuses on the molecular basis of the multifunctional nature of the importin α family, the representative transport receptors that bring proteins into the nucleus. Importin α performs multiple functions during the nuclear transport cycle through interactions with multiple molecules by a single domain called the IBB domain. This domain is a long chameleon sequence, which can change its conformation and binding mode depending on the interaction partners. By considering the evolutionarily conserved biochemical/physicochemical propensities of the amino acids constituting the functional complex interfaces, together with their structural properties, the mechanisms of switching between multiple complexes formed via IBB and the regulation of downstream functions are examined in detail. The mechanism of regulation by IBB indicates that the time has come for a paradigm shift in the way we view the molecular mechanisms by which proteins regulate downstream functions through their interactions with other molecules.
Collapse
Affiliation(s)
- Kazuya Jibiki
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Takashi S Kodama
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Osaka, Japan.
| | - Noriko Yasuhara
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan.
| |
Collapse
|
4
|
Jin L, Zhang G, Yang G, Dong J. Identification of the Karyopherin Superfamily in Maize and Its Functional Cues in Plant Development. Int J Mol Sci 2022; 23:ijms232214103. [PMID: 36430578 PMCID: PMC9699179 DOI: 10.3390/ijms232214103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Appropriate nucleo-cytoplasmic partitioning of proteins is a vital regulatory mechanism in phytohormone signaling and plant development. However, how this is achieved remains incompletely understood. The Karyopherin (KAP) superfamily is critical for separating the biological processes in the nucleus from those in the cytoplasm. The KAP superfamily is divided into Importin α (IMPα) and Importin β (IMPβ) families and includes the core components in mediating nucleocytoplasmic transport. Recent reports suggest the KAPs play crucial regulatory roles in Arabidopsis development and stress response by regulating the nucleo-cytoplasmic transport of members in hormone signaling. However, the KAP members and their associated molecular mechanisms are still poorly understood in maize. Therefore, we first identified seven IMPα and twenty-seven IMPβ genes in the maize genome and described their evolution traits and the recognition rules for substrates with nuclear localization signals (NLSs) or nuclear export signals (NESs) in plants. Next, we searched for the protein interaction partners of the ZmKAPs and selected the ones with Arabidopsis orthologs functioning in auxin biosynthesis, transport, and signaling to predict their potential function. Finally, we found that several ZmKAPs share similar expression patterns with their interacting proteins, implying their function in root development. Overall, this article focuses on the Karyopherin superfamily in maize and starts with this entry point by systematically comprehending the KAP-mediated nucleo-cytoplasmic transport process in plants, and then predicts the function of the ZmKAPs during maize development, with a perspective on a closely associated regulatory mechanism between the nucleo-cytoplasmic transport and the phytohormone network.
Collapse
Affiliation(s)
- Lu Jin
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Guobin Zhang
- College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Guixiao Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jiaqiang Dong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
5
|
Jibiki K, Liu MY, Lei CS, Kodama TS, Kojima C, Fujiwara T, Yasuhara N. Biochemical propensity mapping for structural and functional anatomy of importin α IBB domain. Genes Cells 2021; 27:173-191. [PMID: 34954861 DOI: 10.1111/gtc.12917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/28/2022]
Abstract
Importin α has been described as a nuclear protein transport receptor that enables proteins synthesized in the cytoplasm to translocate into the nucleus. Besides its function in nuclear transport, an increasing number of studies have examined its non-nuclear transport functions. In both nuclear transport and non-nuclear transport, a functional domain called the IBB domain (importin β binding domain) plays a key role in regulating importin α behavior, and is a common interacting domain for multiple binding partners. However, it is not yet fully understood how the IBB domain interacts with multiple binding partners, which leads to the switching of importin α function. In this study, we have distinguished the location and propensities of amino acids important for each function of the importin α IBB domain by mapping the biochemical/physicochemical propensities of evolutionarily conserved amino acids of the IBB domain onto the structure associated with each function. We found important residues that are universally conserved for IBB functions across species and family members, in addition to those previously known, as well as residues that are presumed to be responsible for the differences in complex-forming ability among family members and for functional switching.
Collapse
Affiliation(s)
- Kazuya Jibiki
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Mo-Yan Liu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Chao-Sen Lei
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Takashi S Kodama
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Sita, Osaka, Japan
| | - Chojiro Kojima
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Sita, Osaka, Japan.,Graduate School of Engineering Science, Yokohama National University, Yokohama, kanagawa, Japan
| | - Toshimichi Fujiwara
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Sita, Osaka, Japan
| | - Noriko Yasuhara
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan.,Department of Biosciences, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| |
Collapse
|