1
|
Sacco M, Testa MF, Ferretti A, Basso M, Lancellotti S, Tardugno M, Di Gennaro L, Concolino P, Minucci A, Spoliti C, Branchini A, De Cristofaro R. An integrated multitool analysis contributes elements to interpreting unclassified factor IX missense variants associated with hemophilia B. J Thromb Haemost 2024; 22:2724-2738. [PMID: 39019441 DOI: 10.1016/j.jtha.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/10/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Dissection of genotype-phenotype relationships in hemophilia B (HB) is particularly relevant for challenging (mild HB) or for HB-associated but unclassified factor (F)IX missense variants. OBJECTIVE To contribute elements to interpret unclassified HB-associated FIX missense variants by a multiple-level approach upon identification of a reported, but uncharacterized, FIX missense variant associated with mild HB. METHODS Molecular modeling of wild-type and V92A FIX variants, expression studies in HEK293 cells with evaluation of protein (ELISA, western blotting) and activity (activated partial thromboplastin time-based/chromogenic assays) levels after recombinant expression, and multiple prediction tools. RESULTS The F9(NM_000133.4):c.275T>C (p.V92A) variant was found in a mild HB patient (antigen, 45.4 U/dL; coagulant activity, 23.6 IU/dL; specific activity, 0.52). Newly generated molecular models showed alterations in Gla/EGF1-EGF2 domain conformation impacting Ca++ affinity and protein-protein interactions with activated factor XI (FXIa). Multitool analysis indicated a moderate impact on protein structure/function of the valine-to-alanine substitution, in accordance with patient and modeling data. Expression studies on the V92A variant showed a specific activity (0.49 ± 0.07; wild-type, 1.0 ± 0.1) recapitulating that of the natural variant, and pointed toward a moderate activation impairment as the main determinant underlying the p.V92A defect. The validated multitool approach, integrated with evidence-based data, was challenged on a panel (n = 9) of unclassified FIX missense variants, which resulted in inferred protein (secretion/function) outputs and HB severity. CONCLUSION The rational integration of multitool and multiparameter analyses contributed elements to interpret genotype/phenotype relationships of unclassified FIX missense variants, with implications for diagnosis, management, and treatment of HB patients, and potentially translatable into other human disorders.
Collapse
Affiliation(s)
- Monica Sacco
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - Maria Francesca Testa
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Antonietta Ferretti
- Center for Hemorrhagic and Thrombotic Diseases, Foundation University Hospital "A. Gemelli" IRCCS, Rome, Italy
| | - Maria Basso
- Center for Hemorrhagic and Thrombotic Diseases, Foundation University Hospital "A. Gemelli" IRCCS, Rome, Italy
| | - Stefano Lancellotti
- Center for Hemorrhagic and Thrombotic Diseases, Foundation University Hospital "A. Gemelli" IRCCS, Rome, Italy
| | - Maira Tardugno
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - Leonardo Di Gennaro
- Center for Hemorrhagic and Thrombotic Diseases, Foundation University Hospital "A. Gemelli" IRCCS, Rome, Italy
| | - Paola Concolino
- Molecular and Genomic Diagnostics Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Angelo Minucci
- Molecular and Genomic Diagnostics Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Claudia Spoliti
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Raimondo De Cristofaro
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy; Center for Hemorrhagic and Thrombotic Diseases, Foundation University Hospital "A. Gemelli" IRCCS, Rome, Italy.
| |
Collapse
|
2
|
Krumb E, Mehta N, Hutchinson C, Jradeh B, Jaslowska E, Gomez K, Abdul-Kadir R. Postmortem diagnosis of severe factor X deficiency in a fetus with intracranial hemorrhage resulting in intrauterine death. J Thromb Haemost 2023; 21:3501-3507. [PMID: 37678549 DOI: 10.1016/j.jtha.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
In patients with severe congenital factor X deficiency, spontaneous intracranial hemorrhage (ICH) is particularly frequent in early childhood. We describe a case of fetal death at 26 weeks due to massive ICH. Gene panel analysis of postmortem samples revealed homozygosity for a pathologic F10 gene variant (c.1210T>C, p.Cys404Arg), which impedes correct folding of the catalytic serine protease domain and, therefore, causes a significant reduction in FX levels. The parents, not consanguineous but of the same ethnic community, were found to be heterozygous for this variant and did not have any personal or family history of abnormal bleeding. To the best of our knowledge, this is the first reported case of severe FX deficiency resulting in ICH diagnosed through postmortem genetic analysis. It illustrates the importance of exploring the etiology of fetal or neonatal ICH, which may impact future pregnancies, and the treatment of a potential coagulopathy in the child.
Collapse
Affiliation(s)
- Evelien Krumb
- Haemostasis and Thrombosis Unit, Division of Adult Haematology, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium.
| | - Nishita Mehta
- Department of Obstetrics and Gynaecology, The Royal Free NHS Foundation Hospital, London, United Kingdom
| | - Ciaran Hutchinson
- Great Ormond Street Hospital Institute of Child Health, London, United Kingdom
| | - Bilal Jradeh
- Health Services Laboratories, London, United Kingdom
| | - Ewa Jaslowska
- Health Services Laboratories, London, United Kingdom
| | - Keith Gomez
- Katharine Dormandy Haemophilia and Thrombosis Centre, The Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Rezan Abdul-Kadir
- Department of Obstetrics and Gynaecology, The Royal Free NHS Foundation Hospital, London, United Kingdom; Katharine Dormandy Haemophilia and Thrombosis Centre, The Royal Free London NHS Foundation Trust, London, United Kingdom; Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
3
|
Testa MF, Lombardi S, Bernardi F, Ferrarese M, Belvini D, Radossi P, Castaman G, Pinotti M, Branchini A. Translational readthrough at F8 nonsense variants in the factor VIII B domain contributes to residual expression and lowers inhibitor association. Haematologica 2022; 108:472-482. [PMID: 35924581 PMCID: PMC9890017 DOI: 10.3324/haematol.2022.281279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 02/03/2023] Open
Abstract
In hemophilia A, F8 nonsense variants, and particularly those affecting the large factor VIII (FVIII) B domain that is dispensable for coagulant activity, display lower association with replacement therapy-related anti-FVIII inhibitory antibodies as retrieved from multiple international databases. Since null genetic conditions favor inhibitor development, we hypothesized that translational readthrough over premature termination codons (PTC) may contribute to immune tolerance by producing full-length proteins through the insertion of amino acid subset(s). To quantitatively evaluate the readthrough output in vitro, we developed a very sensitive luciferase-based system to detect very low full-length FVIII synthesis from a wide panel (n=45; ~60% patients with PTC) of F8 nonsense variants. PTC not associated with inhibitors displayed higher readthrough-driven expression levels than inhibitor-associated PTC, a novel observation. Particularly, higher levels were detected for B-domain variants (n=20) than for variants in other domains (n=25). Studies on plasma from six hemophilia A patients with PTC, integrated by expression of the corresponding nonsense and readthrough-deriving missense variants, consistently revealed higher FVIII levels for B-domain variants. Only one B-domain PTC (Arg814*) was found among the highly represented PTC not sporadically associated with inhibitors, but with the lowest proportion of inhibitor cases (4 out of 57). These original insights into the molecular genetics of hemophilia A, and particularly into genotype-phenotype relationships related with disease treatment, demonstrate that B-domain features favor PTC readthrough output. This provides a potential molecular mechanism contributing to differential PTC-associated inhibitor occurrence, with translational implications for a novel, experimentally based classification of F8 nonsense variants.
Collapse
Affiliation(s)
- Maria Francesca Testa
- Department of Life Sciences and Biotechnology and LTTA Center, University of Ferrara, Ferrara
| | - Silvia Lombardi
- Department of Life Sciences and Biotechnology and LTTA Center, University of Ferrara, Ferrara,°Current address: Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology and LTTA Center, University of Ferrara, Ferrara
| | - Mattia Ferrarese
- Department of Life Sciences and Biotechnology and LTTA Center, University of Ferrara, Ferrara
| | - Donata Belvini
- Transfusion Service, Hemophilia Center and Hematology, Castelfranco Veneto Hospital, Castelfranco Veneto
| | - Paolo Radossi
- Oncohematology-Oncologic Institute of Veneto, Castelfranco Veneto Hospital, Castelfranco Veneto
| | - Giancarlo Castaman
- Center for Bleeding Disorders and Coagulation, Careggi University Hospital, Florence, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology and LTTA Center, University of Ferrara, Ferrara.
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology and LTTA Center, University of Ferrara, Ferrara.
| |
Collapse
|
4
|
Branchini A. The carboxyl-terminal region of coagulation serine proteases: A matter of cut and change. J Thromb Haemost 2021; 19:917-919. [PMID: 33792173 DOI: 10.1111/jth.15237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Molecular Insights into Determinants of Translational Readthrough and Implications for Nonsense Suppression Approaches. Int J Mol Sci 2020; 21:ijms21249449. [PMID: 33322589 PMCID: PMC7764779 DOI: 10.3390/ijms21249449] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/27/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
The fidelity of protein synthesis, a process shaped by several mechanisms involving specialized ribosome regions and external factors, ensures the precise reading of sense and stop codons. However, premature termination codons (PTCs) arising from mutations may, at low frequency, be misrecognized and result in PTC suppression, named ribosome readthrough, with production of full-length proteins through the insertion of a subset of amino acids. Since some drugs have been identified as readthrough inducers, this fidelity drawback has been explored as a therapeutic approach in several models of human diseases caused by nonsense mutations. Here, we focus on the mechanisms driving translation in normal and aberrant conditions, the potential fates of mRNA in the presence of a PTC, as well as on the results obtained in the research of efficient readthrough-inducing compounds. In particular, we describe the molecular determinants shaping the outcome of readthrough, namely the nucleotide and protein context, with the latter being pivotal to produce functional full-length proteins. Through the interpretation of experimental and mechanistic findings, mainly obtained in lysosomal and coagulation disorders, we also propose a scenario of potential readthrough-favorable features to achieve relevant rescue profiles, representing the main issue for the potential translatability of readthrough as a therapeutic strategy.
Collapse
|
6
|
Zimowski KL, McGuinn CE, Abajas YL, Schultz CL, Kaicker S, Batsuli G. Use of plasma-derived factor X concentrate in neonates and infants with congenital factor X deficiency. J Thromb Haemost 2020; 18:2551-2556. [PMID: 32613702 DOI: 10.1111/jth.14985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/29/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Congenital factor X deficiency (FXD) is a rare bleeding disorder that often presents with severe bleeding in the neonatal period. Long-term prophylaxis with infusions of FX-containing products is recommended in patients with FXD and a personal or family history of severe bleeding. A plasma-derived FX concentrate (pdFX) is approved for on-demand and prophylactic therapy in adults and children with FXD. The safety and efficacy of pdFX has been demonstrated in patients <12 years of age, yet limited data exist regarding its use in infants. PATIENTS/METHODS This retrospective case series details clinical experience using pdFX in four neonates with moderate and severe FXD across four institutions. RESULTS AND CONCLUSIONS All four patients presented in the first week of life with severe bleeding. Following treatment of the acute bleed, prophylactic pdFX was initiated at an average of 29 days of life and a dose of 69 IU/kg every 48 hours. Incremental recovery (IR) in three infants averaged 1.42 IU/dL per IU/kg (min-max: 1.06-1.67 IU/dL per IU/kg). One patient experienced thrombotic complications in the setting of sepsis. After a median follow-up of 26.5 months, no patient has experienced breakthrough bleeding episodes. Our study supports the use of pdFX in neonates and infants and suggests that higher pdFX dosing of 70 to 80 IU/kg every 48 hours based on the smallest available vial size is feasible. Because of variability in IR, close monitoring of FX activity should be used to guide dosing in this age group.
Collapse
Affiliation(s)
- Karen L Zimowski
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Catherine E McGuinn
- Division of Pediatric Hematology and Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Yasmina L Abajas
- Pediatric Hematology/Oncology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Corinna L Schultz
- Nemours Center for Cancer & Blood Disorders, Nemours/AI duPont Hospital for Children, Wilmington, Delaware, USA
| | - Shipra Kaicker
- Division of Pediatric Hematology and Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Glaivy Batsuli
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Paraboschi EM, Khera AV, Merlini PA, Gigante L, Peyvandi F, Chaffin M, Menegatti M, Busti F, Girelli D, Martinelli N, Olivieri O, Kathiresan S, Ardissino D, Asselta R, Duga S. Rare variants lowering the levels of coagulation factor X are protective against ischemic heart disease. Haematologica 2019; 105:e365-e369. [PMID: 31699787 DOI: 10.3324/haematol.2019.237750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Amit Vikram Khera
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Massachusetts General Hospital, Cardiology Division, Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | | | - Laura Gigante
- Division of Cardiology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Flora Peyvandi
- Angelo Bianchi Bonomi Haemophilia and Thrombosis Centre, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico and Luigi Villa Foundation, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Mark Chaffin
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Massachusetts General Hospital, Cardiology Division, Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Marzia Menegatti
- Angelo Bianchi Bonomi Haemophilia and Thrombosis Centre, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico and Luigi Villa Foundation, Milan, Italy
| | - Fabiana Busti
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
| | - Domenico Girelli
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
| | - Nicola Martinelli
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
| | - Oliviero Olivieri
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
| | - Sekar Kathiresan
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Massachusetts General Hospital, Cardiology Division, Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Diego Ardissino
- Division of Cardiology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
8
|
Balestra D, Branchini A. Molecular Mechanisms and Determinants of Innovative Correction Approaches in Coagulation Factor Deficiencies. Int J Mol Sci 2019; 20:ijms20123036. [PMID: 31234407 PMCID: PMC6627357 DOI: 10.3390/ijms20123036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/07/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Molecular strategies tailored to promote/correct the expression and/or processing of defective coagulation factors would represent innovative therapeutic approaches beyond standard substitutive therapy. Here, we focus on the molecular mechanisms and determinants underlying innovative approaches acting at DNA, mRNA and protein levels in inherited coagulation factor deficiencies, and in particular on: (i) gene editing approaches, which have permitted intervention at the DNA level through the specific recognition, cleavage, repair/correction or activation of target sequences, even in mutated gene contexts; (ii) the rescue of altered pre-mRNA processing through the engineering of key spliceosome components able to promote correct exon recognition and, in turn, the synthesis and secretion of functional factors, as well as the effects on the splicing of missense changes affecting exonic splicing elements; this section includes antisense oligonucleotide- or siRNA-mediated approaches to down-regulate target genes; (iii) the rescue of protein synthesis/function through the induction of ribosome readthrough targeting nonsense variants or the correction of folding defects caused by amino acid substitutions. Overall, these approaches have shown the ability to rescue the expression and/or function of potentially therapeutic levels of coagulation factors in different disease models, thus supporting further studies in the future aimed at evaluating the clinical translatability of these new strategies.
Collapse
Affiliation(s)
- Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|