1
|
Oya S, Ozawa H, Nakamura T, Mori A, Ochi S, Maehiro Y, Umeda M, Takaki Y, Fukuyama T, Yamasaki Y, Yamaguchi M, Aoyama K, Mouri F, Nagafuji K. CRISPR/Cas9 gene editing clarifies the role of CD33 SNP rs12459419 in gemtuzumab ozogamicin-mediated cytotoxicity. Int J Hematol 2024; 120:194-202. [PMID: 38853211 DOI: 10.1007/s12185-024-03803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The single-nucleotide polymorphism (SNP) rs12459419 is located at the intron/exon junction of CD33 exon2. When exon2 is skipped by this CD33 SNP, the full-length CD33 (CD33FL) is converted to a short CD33 isoform (CD33D2). Since gemtuzumab ozogamicin (GO) only recognizes CD33FL, the CD33 SNP may affect the clinical efficacy of GO. To elucidate the significance of CD33 SNP on GO reactivity, we leveraged the CRISPR/Cas9 genome-editing system to create OCI-AML3 cell lines with specifically modified CD33 SNPs. Levels of CD33 D2 mRNA were significantly higher in the T/T clone (p < 0.001), but CD33D2 protein was not detectable in any clones. There was no significant difference in CD33FL mRNA expression across edited clones, and CD33FL protein expression was lowest in T/T clones, followed by T/C and C/C. Cytotoxicity assays revealed that the IC50 of GO was significantly lower in T/C and C/C clones than in the T/T clone (p < 0.001). Our study demonstrated a difference in GO-induced cytotoxicity in CD33 SNP-edited clones, clearly indicating that at least one CD33 SNP allele, rs12459419 C, is important for sensitivity to GO.
Collapse
Affiliation(s)
- Shuki Oya
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Hidetoshi Ozawa
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Takayuki Nakamura
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Akira Mori
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Sorahiko Ochi
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Yoshimi Maehiro
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Masahiro Umeda
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Yusuke Takaki
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Toshinobu Fukuyama
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Yoshitaka Yamasaki
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Maki Yamaguchi
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Kazutoshi Aoyama
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Fumihiko Mouri
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Koji Nagafuji
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| |
Collapse
|
2
|
Todaro AM, Radu CM, Ciccone M, Toffanin S, Serino ML, Campello E, Bulato C, Lunghi B, Gemmati D, Cuneo A, Hackeng TM, Simioni P, Bernardi F, Castoldi E. In vitro and ex vivo rescue of a nonsense mutation responsible for severe coagulation factor V deficiency. J Thromb Haemost 2024; 22:410-422. [PMID: 37866515 DOI: 10.1016/j.jtha.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Coagulation factor V (FV) deficiency is a rare bleeding disorder that is usually managed with fresh-frozen plasma. Patients with nonsense mutations may respond to treatment with readthrough agents. OBJECTIVES To investigate whether the F5 p.Arg1161Ter mutation, causing severe FV deficiency in several patients, would be amenable to readthrough therapy. METHODS F5 mRNA and protein expression were evaluated in a F5 p.Arg1161Ter-homozygous patient. Five readthrough agents with different mechanisms of action, i.e. G418, ELX-02, PTC-124, 2,6-diaminopurine (2,6-DAP), and Amlexanox, were tested in in vitro and ex vivo models of the mutation. RESULTS The F5 p.Arg1161Ter-homozygous patient showed residual F5 mRNA and functional platelet FV, indicating detectable levels of natural readthrough. COS-1 cells transfected with the FV-Arg1161Ter cDNA expressed 0.7% FV activity compared to wild-type. Treatment with 0-500 μM G418, ELX-02, and 2,6-DAP dose-dependently increased FV activity up to 7.0-fold, 3.1-fold, and 10.8-fold, respectively, whereas PTC-124 and Amlexanox (alone or in combination) were ineffective. These findings were confirmed by thrombin generation assays in FV-depleted plasma reconstituted with conditioned media of treated cells. All compounds except ELX-02 showed some degree of cytotoxicity. Ex vivo differentiated megakaryocytes of the F5 p.Arg1161Ter-homozygous patient, which were negative at FV immunostaining, turned positive after treatment with all 5 readthrough agents. Notably, they were also able to internalize mutant FV rescued with G418 or 2,6-DAP, which would be required to maintain the crucial platelet FV pool in vivo. CONCLUSION These findings provide in vitro and ex vivo proof-of-principle for readthrough-mediated rescue of the F5 p.Arg1161Ter mutation.
Collapse
Affiliation(s)
- Alice M Todaro
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Claudia M Radu
- Department of Medicine, Thrombotic and Haemorrhagic Diseases Unit, Padua University Medical School, Padua, Italy
| | - Maria Ciccone
- Department of Medical Sciences, Section of Haematology, Sant'Anna Hospital, Ferrara University, Ferrara, Italy
| | - Serena Toffanin
- Department of Medicine, Thrombotic and Haemorrhagic Diseases Unit, Padua University Medical School, Padua, Italy
| | - M Luisa Serino
- Department of Medical Sciences, Section of Haematology, Sant'Anna Hospital, Ferrara University, Ferrara, Italy
| | - Elena Campello
- Department of Medicine, Thrombotic and Haemorrhagic Diseases Unit, Padua University Medical School, Padua, Italy
| | - Cristiana Bulato
- Department of Medicine, Thrombotic and Haemorrhagic Diseases Unit, Padua University Medical School, Padua, Italy
| | - Barbara Lunghi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, Haemostasis & Thrombosis Centre, Ferrara University, Ferrara, Italy
| | - Antonio Cuneo
- Department of Medical Sciences, Section of Haematology, Sant'Anna Hospital, Ferrara University, Ferrara, Italy
| | - Tilman M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Paolo Simioni
- Department of Medicine, Thrombotic and Haemorrhagic Diseases Unit, Padua University Medical School, Padua, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Elisabetta Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
3
|
De Pablo-Moreno JA, Miguel-Batuecas A, Rodríguez-Merchán EC, Liras A. Treatment of congenital coagulopathies, from biologic to biotechnological drugs: The relevance of gene editing (CRISPR/Cas). Thromb Res 2023; 231:99-111. [PMID: 37839151 DOI: 10.1016/j.thromres.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/09/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Congenital coagulopathies have, throughout the history of medicine, been a focus of scientific study and of great interest as they constitute an alteration of one of the most important and conserved pathways of evolution. The first therapeutic strategies developed to address them were aimed at restoring the blood components lost during hemorrhage by administering whole blood or plasma. Later on, the use of cryoprecipitates was a significant breakthrough as it made it possible to decrease the volumes of blood infused. In the 1970' and 80', clotting factor concentrates became the treatment and, from the 1990's to the present day, recombinant factors -with increasingly longer half-lives- have taken over as the treatment of choice for certain coagulopathies in a seamless yet momentous transition from biological to biotechnological drugs. The beginning of this century, however, saw the emergence of new advanced (gene and cell) treatments, which are currently transforming the therapeutic landscape. The possibility to use cells and viruses as well as specific or bispecific antibodies as medicines is likely to spark a revolution in the world of pharmacology where therapies will be individualized and have long-term effects. Specifically, attention is nowadays focused on the development of gene editing strategies, chiefly those based on CRISPR/Cas technology. Rare coagulopathies such as hemophilia A and B, or even ultra-rare ones such as factor V deficiency, could be among those deriving the greatest benefit from these new developments.
Collapse
Affiliation(s)
- Juan A De Pablo-Moreno
- Department of Genetic, Physiology and Microbiology, Biology School, Complutense University of Madrid, Spain
| | - Andrea Miguel-Batuecas
- Department of Genetic, Physiology and Microbiology, Biology School, Complutense University of Madrid, Spain
| | - E Carlos Rodríguez-Merchán
- Osteoarticular Surgery Research, Hospital La Paz Institute for Health Research-IdiPAZ (La Paz University Hospital-Autonomous University of Madrid), Spain
| | - Antonio Liras
- Department of Genetic, Physiology and Microbiology, Biology School, Complutense University of Madrid, Spain.
| |
Collapse
|
4
|
Inui J, Ueyama-Toba Y, Mitani S, Mizuguchi H. Development of a method of passaging and freezing human iPS cell-derived hepatocytes to improve their functions. PLoS One 2023; 18:e0285783. [PMID: 37200286 DOI: 10.1371/journal.pone.0285783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/29/2023] [Indexed: 05/20/2023] Open
Abstract
Human induced pluripotent stem (iPS) cell-derived hepatocyte-like cells (HLCs) are expected to replace primary human hepatocytes as a new source of functional hepatocytes in various medical applications. However, the hepatic functions of HLCs are still low and it takes a long time to differentiate them from human iPS cells. Furthermore, HLCs have very low proliferative capacity and are difficult to be passaged due to loss of hepatic functions after reseeding. To overcome these problems, we attempted to develop a technology to dissociate, cryopreserve, and reseed HLCs in this study. By adding epithelial-mesenchymal transition inhibitors and optimizing the cell dissociation time, we have developed a method for passaging HLCs without loss of their functions. After passage, HLCs showed a hepatocyte-like polygonal cell morphology and expressed major hepatocyte marker proteins such as albumin and cytochrome P450 3A4 (CYP3A4). In addition, the HLCs had low-density lipoprotein uptake and glycogen storage capacity. The HLCs also showed higher CYP3A4 activity and increased gene expression levels of major hepatocyte markers after passage compared to before passage. Finally, they maintained their functions even after their cryopreservation and re-culture. By applying this technology, it will be possible to provide ready-to-use availability of cryopreserved HLCs for drug discovery research.
Collapse
Affiliation(s)
- Jumpei Inui
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yukiko Ueyama-Toba
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Seiji Mitani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Factor V deficiency with a unique genetic mutation presenting as post-circumcision bleeding in a neonate, A-case-report. Ann Med Surg (Lond) 2022; 78:103723. [PMID: 35600191 PMCID: PMC9121243 DOI: 10.1016/j.amsu.2022.103723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 11/22/2022] Open
Abstract
Introduction and importance Factor V deficiency is a rare bleeding disorder with varying presentations from minor mucosal bleeding to a life-threatening postoperative bleed. Currently, treatment is mainly supportive with Fresh Frozen Plasma. Case presentation A previously healthy 14-day-old male presented with an uncontrollable bleeding following a circumcision. Physical examination was normal. Investigations showed hemoglobin 15.5 g/dl, platelets 409000, Prothrombin Time 57 seconds, Partial-Thromboplastin-Time 120 seconds. Mixing study corrected the coagulation profile, and the factor assay showed factor V activity of 11%. Genetic testing showed a pathogenic frameshift mutation in the F5 gene p.(P927Lfs*7) causing premature termination after 7 codons thus the diagnosis of Factor V deficiency was made. Clinical discussion In this case, factor V deficiency presented as post-circumcision bleeding. For diagnosis, increased PT and PTT with normal thrombin time increases the index of suspicion for a bleeding disorder. Further testing with coagulation factors assays is required to make the final diagnosis. Factor V deficient patients undergoing surgery should be adequately prepared, and factor V activity level should be maintained at least at 25% of the normal activity level. The patient level prior to the circumcision was unknown, which led to the life threatening bleed. Conclusions One of the early presentations of factor V deficiency is a post-circumcision bleeding. Adequate preparation with laboratory tests before circumcision is therefore recommended, especially for high-risk individuals. More than 100 genetic mutations were detected; frameshift mutation involving F5 gene p.(P927Lfs*7) was seen in our case.
Collapse
|
6
|
The most common disease-causing mutation of factor XIII deficiency is corrected by CRISPR/CAS9 gene editing system. Blood Coagul Fibrinolysis 2022; 33:153-158. [PMID: 35221320 DOI: 10.1097/mbc.0000000000001126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Factor XIII (FXIII) deficiency is one of the most severe congenital bleeding disorders, with an estimated incidence of one person per one million. Patients with severe FXIII deficiency present a wide range of clinical manifestations, including umbilical cord bleeding, intracranial haemorrhage and recurrent miscarriages. Due to the high rate of life-threatening bleeding, primary prophylaxis is mandatory from the time of diagnosis. Although replacement therapy is the most common therapeutic choice, gene therapy remains the only curative option. In the present study, we assessed the efficacy of the clustered regularly interspaced short palindromic repeats - CRISPR-associated protein 9 (CRISPR/Cas9) system in the correction of the most common FXIII disease-causing mutation (c.562 T > C). A dermal fibroblast was harvested from the human skin biopsy of a young patient with FXIII deficiency. Sanger sequencing was used to confirm the presence of c.562 T>C mutation in the patient and in the harvested fibroblasts. PX459 vector was digested with BbsI restriction enzyme, and after annealing and ligation of two 20-bp guide-RNAs (g-RNAs) close to the PAM (NGG) sequence, the constructed vectors were amplified in Escherichia coli Top 10. Transfection was performed by a nucleofector device, and DNA extraction was performed after puromycin selection and serial dilution from potentially transfected colonies. A 50-bp template oligonucleotide was used to aid homologous repair for correction of the underlying mutation and synonymous mutation as an internal control. The synonymous mutation (AAT to ACT) near the mutation site was used as internal control. Sanger sequencing was done in order to check the gene correction. The c.562 T > C mutation was detected in homozygote state in the primary fibroblasts of the patient and wild-type alleles were confirmed in the normal individual. Colony PCR and sequencing revealed successful cloning of the designed gRNAs. The detected mutation was corrected from a homozygote mutant state (c.562 T > C) to a homozygote wild type in transfected dermal fibroblasts of the patient. The control mutation, as an internal control, was also corrected in the same fibroblasts in the heterozygote manner. The result of the study shows that the CRISPR/CAS9 gene editing system is an effective tool for correction of point mutations in transfected fibroblasts of patients with congenital FXIII deficiency and represents a new, potentially curative, option.
Collapse
|
7
|
Bhattacharjee G, Gohil N, Khambhati K, Mani I, Maurya R, Karapurkar JK, Gohil J, Chu DT, Vu-Thi H, Alzahrani KJ, Show PL, Rawal RM, Ramakrishna S, Singh V. Current approaches in CRISPR-Cas9 mediated gene editing for biomedical and therapeutic applications. J Control Release 2022; 343:703-723. [PMID: 35149141 DOI: 10.1016/j.jconrel.2022.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
Abstract
A single gene mutation can cause a number of human diseases that affect quality of life. Until the development of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) systems, it was challenging to correct a gene mutation to avoid disease by reverting phenotypes. The advent of CRISPR technology has changed the field of gene editing, given its simplicity and intrinsic programmability, surpassing the limitations of both zinc-finger nuclease and transcription activator-like effector nuclease and becoming the method of choice for therapeutic gene editing by overcoming the bottlenecks of conventional gene-editing techniques. Currently, there is no commercially available medicinal cure to correct a gene mutation that corrects and reverses the abnormality of a gene's function. Devising reprogramming strategies for faithful recapitulation of normal phenotypes is a crucial aspect for directing the reprogrammed cells toward clinical trials. The CRISPR-Cas9 system has been promising as a tool for correcting gene mutations in maladies including blood disorders and muscular degeneration as well as neurological, cardiovascular, renal, genetic, stem cell, and optical diseases. In this review, we highlight recent developments and utilization of the CRISPR-Cas9 system in correcting or generating gene mutations to create model organisms to develop deeper insights into diseases, rescue normal gene functionality, and curb the progression of a disease.
Collapse
Affiliation(s)
- Gargi Bhattacharjee
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Khushal Khambhati
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi 110049, India
| | - Rupesh Maurya
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | | | - Jigresh Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Viet Nam
| | - Hue Vu-Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Viet Nam
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Rakesh M Rawal
- Department of Biochemistry and Forensic Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India.
| |
Collapse
|
8
|
Gene Editing Correction of a Urea Cycle Defect in Organoid Stem Cell Derived Hepatocyte-like Cells. Int J Mol Sci 2021; 22:ijms22031217. [PMID: 33530582 PMCID: PMC7865883 DOI: 10.3390/ijms22031217] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Urea cycle disorders are enzymopathies resulting from inherited deficiencies in any genes of the cycle. In severe cases, currently available therapies are marginally effective, with liver transplantation being the only definitive treatment. Donor liver availability can limit even this therapy. Identification of novel therapeutics for genetic-based liver diseases requires models that provide measurable hepatic functions and phenotypes. Advances in stem cell and genome editing technologies could provide models for the investigation of cell-based genetic diseases, as well as the platforms for drug discovery. This report demonstrates a practical, and widely applicable, approach that includes the successful reprogramming of somatic cells from a patient with a urea cycle defect, their genetic correction and differentiation into hepatic organoids, and the subsequent demonstration of genetic and phenotypic change in the edited cells consistent with the correction of the defect. While individually rare, there is a large number of other genetic-based liver diseases. The approach described here could be applied to a broad range and a large number of patients with these hepatic diseases where it could serve as an in vitro model, as well as identify successful strategies for corrective cell-based therapy.
Collapse
|