1
|
Trandafir MF, Savu OI, Gheorghiu M. The Complex Immunological Alterations in Patients with Type 2 Diabetes Mellitus on Hemodialysis. J Clin Med 2024; 13:3687. [PMID: 38999253 PMCID: PMC11242658 DOI: 10.3390/jcm13133687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024] Open
Abstract
It is widely known that diabetes mellitus negatively impacts both the innate immunity (the inflammatory response) and the acquired immunity (the humoral and cellular immune responses). Many patients with diabetes go on to develop chronic kidney disease, which will necessitate hemodialysis. In turn, long-term chronic hemodialysis generates an additional chronic inflammatory response and impairs acquired immunity. The purpose of this paper is to outline and compare the mechanisms that are the basis of the constant aggression towards self-components that affects patients with diabetes on hemodialysis, in order to find possible new therapeutic ways to improve the functionality of the immune system. Our study will take a detailed look at the mechanisms of endothelial alteration in diabetes and hemodialysis, at the mechanisms of inflammatory generation and signaling at different levels and also at the mechanisms of inflammation-induced insulin resistance. It will also discuss the alterations in leukocyte chemotaxis, antigen recognition and the dysfunctionalities in neutrophils and macrophages. Regarding acquired immunity, we will outline the behavioral alterations of T and B lymphocytes induced by diabetes mellitus and chronic hemodialysis.
Collapse
Affiliation(s)
- Maria-Florina Trandafir
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Octavian Ionel Savu
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- “N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020475 Bucharest, Romania
| | - Mihaela Gheorghiu
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| |
Collapse
|
2
|
Trandafir MF, Savu O, Pasarica D, Bleotu C, Gheorghiu M. Interleukin-6 as a Director of Immunological Events and Tissue Regenerative Capacity in Hemodialyzed Diabetes Patients. Med Sci (Basel) 2024; 12:31. [PMID: 38921685 PMCID: PMC11205729 DOI: 10.3390/medsci12020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Hemodialyzed patients have innate immunity activation and adaptive immunity senescence. Diabetes mellitus is a frequent cause for chronic kidney disease and systemic inflammation. We studied the immunological pattern (innate and acquired immunity) and the tissular regeneration capacity in two groups of hemodialyzed patients: one comprised of diabetics and the other of non-diabetics. For inflammation, the following serum markers were determined: interleukin 6 (IL-6), interleukin 1β (IL-1β), tumoral necrosis factor α (TNF-α), IL-6 soluble receptor (sIL-6R), NGAL (human neutrophil gelatinase-associated lipocalin), and interleukin 10 (IL-10). Serum tumoral necrosis factor β (TNF-β) was determined as a cellular immune response marker. Tissue regeneration capacity was studied using neurotrophin-3 (NT-3) and vascular endothelial growth factor β (VEGF-β) serum levels. The results showed important IL-6 and sIL-6R increases in both groups, especially in the diabetic patient group. IL-6 generates trans-signaling at the cellular level through sIL-6R, with proinflammatory and anti-regenerative effects, confirmed through a significant reduction in NT-3 and VEGF-β. Our results suggest that the high serum level of IL-6 significantly influences IL-1β, TNF-β, NT-3, VEGF-β, and IL-10 behavior. Our study is the first that we know of that investigates NT-3 in this patient category. Moreover, we investigated VEGF-β and TNF-β serum behavior, whereas most of the existing data cover only VEGF-α and TNF-α in hemodialyzed patients.
Collapse
Affiliation(s)
- Maria-Florina Trandafir
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.P.); (M.G.)
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Octavian Savu
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- “N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020475 Bucharest, Romania
| | - Daniela Pasarica
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.P.); (M.G.)
| | - Coralia Bleotu
- “Stefan S. Nicolau” Institute of Virology, 030304 Bucharest, Romania;
| | - Mihaela Gheorghiu
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.P.); (M.G.)
| |
Collapse
|
3
|
Ekdahl KN, Fromell K, Mannes M, Grinnemo KH, Huber-Lang M, Teramura Y, Nilsson B. Therapeutic regulation of complement activation in extracorporeal circuits and intravascular treatments with special reference to the alternative pathway amplification loop. Immunol Rev 2023; 313:91-103. [PMID: 36258635 PMCID: PMC10092679 DOI: 10.1111/imr.13148] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A number of clinical treatment modalities involve contact between blood and biomaterials: these include extracorporeal circuits such as hemodialysis, cardiopulmonary bypass, plasmapheresis, and intravascular treatments. Common side effects arising from these treatments are caused by activation of the cascade systems of the blood. Many of these side effects are mediated via the complement system, including thromboinflammatory reactions and rejection of implants. Depending on the composition of the materials, complement activation is triggered via all the activation pathways but is by far mostly driven by the alternative pathway amplification loop. On biomaterial surfaces the alternative pathway amplification is totally unregulated and leads under optimal conditions to deposition of complement fragments, mostly C3b, on the surface leading to a total masking of the underlying surface. In this review, we discuss the mechanism of the complement activation, clinical consequences of the activation, and potential strategies for therapeutic regulation of the activation, using hemodialysis as demonstrator.
Collapse
Affiliation(s)
- Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden.,Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Karin Fromell
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Marco Mannes
- Institute for Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Karl-Henrik Grinnemo
- Department of Surgical Sciences, Division of Cardiothoracic Surgery, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Yuji Teramura
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden.,Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,Master's/Doctoral Program in Life Science Innovation (T-LSI), University of Tsukuba, Tsukuba, Japan
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Immune System Dysfunction and Inflammation in Hemodialysis Patients: Two Sides of the Same Coin. J Clin Med 2022; 11:jcm11133759. [PMID: 35807042 PMCID: PMC9267256 DOI: 10.3390/jcm11133759] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Biocompatibility in hemodialysis (HD) has considerably improved in recent decades, but remains an open issue to be solved, appearing essential to reduce systemic inflammation and enhance patients’ clinical outcomes. Clotting prevention, reduction in complement and leukocyte activation, and improvement of antioxidant effect represent the main goals. This review aims to analyze the different pathways involved in HD patients, leading to immune system dysfunction and inflammation. In particular, we mostly review the evidence about thrombogenicity, which probably represents the most important characteristic of bio-incompatibility. Platelet activation is one of the first steps occurring in HD patients, determining several events causing chronic sub-clinical inflammation and immune dysfunction involvement. Moreover, oxidative stress processes, resulting from a loss of balance between pro-oxidant factors and antioxidant mechanisms, have been described, highlighting the link with inflammation. We updated both innate and acquired immune system dysfunctions and their close link with uremic toxins occurring in HD patients, with several consequences leading to increased mortality. The elucidation of the role of immune dysfunction and inflammation in HD patients would enhance not only the understanding of disease physiopathology, but also has the potential to provide new insights into the development of therapeutic strategies.
Collapse
|
5
|
Nilsson B, Eriksson O, Fromell K, Persson B, Ekdahl KN. How COVID-19 and other pathological conditions and medical treatments activate our intravascular innate immune system. Front Immunol 2022; 13:1030627. [PMID: 36820001 PMCID: PMC9938760 DOI: 10.3389/fimmu.2022.1030627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/09/2022] [Indexed: 02/09/2023] Open
Abstract
COVID-19 has been shown to have a multifaceted impact on the immune system. In a recently published article in Front Immunol, we show that the intravascular innate immune system (IIIS) is strongly activated in severe COVID-19 with ARDS and appears to be one of the causes leading to severe COVID-19. In this article, we describe the IIIS and its physiological function, but also the strong pro-inflammatory effects that are observed in COVID-19 and in various other pathological conditions and treatments such as during ischemia reperfusion injury and in treatments where biomaterials come in direct contact with blood in, e.g., extracorporeal and intravasal treatments. In the present article, we describe how the IIIS, a complex network of plasma proteins and blood cells, constitute the acute innate immune response of the blood and discuss the effects that the IIIS induces in pathological disorders and treatments in modern medicine.
Collapse
Affiliation(s)
- Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Uppsala, Sweden
| | - Oskar Eriksson
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Uppsala, Sweden
| | - Karin Fromell
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Uppsala, Sweden
| | - Barbro Persson
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Uppsala, Sweden
| | - Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Uppsala, Sweden.,Linnæus Center of Biomaterials Chemistry, Linnæus University, Kalmar, Sweden
| |
Collapse
|