1
|
Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, Xie F, Zhang L, Zhou F. Mucosal immune response in biology, disease prevention and treatment. Signal Transduct Target Ther 2025; 10:7. [PMID: 39774607 PMCID: PMC11707400 DOI: 10.1038/s41392-024-02043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chu Lu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunwu Zhang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
DNA Methylation-Mediated Overexpression of CXCL1 in Helicobacter pylori-Induced Gastric Cancer: In Silico- and In Vitro-Based Identification of a Potential Biomarker for Carcinogenesis. Int J Mol Sci 2023; 24:ijms24010795. [PMID: 36614235 PMCID: PMC9820856 DOI: 10.3390/ijms24010795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023] Open
Abstract
Given the high global prevalence and mortality associated with gastric cancer, and its known causal link with Helicobacter pylori infection, it is important to have a biomarker to identify malignant transformation at early stages. Previously, we, and others, have reported that H. pylori-induced epigenetic changes could mediate carcinogenic transformation of the gastric cells. Also, CXCL1 secreted by gastric cancer cells was reported as a key diagnostic and prognostic biomarker for the pathogenic progression of gastric cancer. In this study, for the first time, we aimed to investigate the role of H. pylori-induced DNA methylation-based epigenetic regulation of CXCL1. In silico analysis of publicly available datasets and in vitro experiments were performed. Our results showed that CXCL1 is highly expressed in both gastric cancer tissues and gastric cancer cells infected with H. pylori. Further, we showed and confirmed that H. pylori-mediated overexpression of CXCL1 is due to hypomethylation of its promoter region. Since epigenetic events such as DNA methylation happen early in the sequence; H. pylori-induced CXCL1 hypomethylation could likely be detected at an early stage of gastric cancer development. Epigenetic modifications, such as CXCL1 hypomethylation, are reversible and could potentially be a therapeutic target using demethylation drugs.
Collapse
|
3
|
Epigenetic-Mediated Antimicrobial Resistance: Host versus Pathogen Epigenetic Alterations. Antibiotics (Basel) 2022; 11:antibiotics11060809. [PMID: 35740215 PMCID: PMC9220109 DOI: 10.3390/antibiotics11060809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Since the discovery of antibiotics, humans have been benefiting from them by decreasing the morbidity and mortality associated with bacterial infections. However, in the past few decades, misuse of antibiotics has led to the emergence of bacterial infections resistant to multiple drugs, a significant health concern. Bacteria exposed to inappropriate levels of antibiotics lead to several genetic changes, enabling them to survive in the host and become more resistant. Despite the understanding and targeting of genetic-based biochemical changes in the bacteria, the increasing levels of antibiotic resistance are not under control. Many reports hint at the role of epigenetic modifications in the bacterial genome and host epigenetic reprogramming due to interaction with resistant pathogens. Epigenetic changes, such as the DNA-methylation-based regulation of bacterial mutation rates or bacteria-induced histone modification in human epithelial cells, facilitate its long-term survival. In this review article, epigenetic changes leading to the development of antibiotic resistance in clinically relevant bacteria are discussed. Additionally, recent lines of evidence focusing on human host epigenetic changes due to the human–pathogen interactions are presented. As genetic mechanisms cannot explain the transient nature of antimicrobial resistance, we believe that epigenetics may provide new frontiers in antimicrobial discovery.
Collapse
|
4
|
Lu H, Han X, Ren J, Ren K, Li Z, Zhang Q. Metformin attenuates synergic effect of diabetes mellitus and Helicobacter pylori infection on gastric cancer cells proliferation by suppressing PTEN expression. J Cell Mol Med 2021; 25:4534-4542. [PMID: 33760349 PMCID: PMC8107109 DOI: 10.1111/jcmm.15967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
It has been reported that CagA of Helicobacter pylori reduced PTEN expression by enhancing its promoter methylation. Furthermore, diabetes mellitus (DM) may also promote the methylation status of PTEN, a tumour suppressor gene in gastric cancer (GC). It is intriguing to explore whether DM may strengthen the tumorigenic effect of H pylori (HP) by promoting the methylation of PTEN promoter and whether the administration of metformin may reduce the risk of GC by suppressing the methylation of PTEN promoter. In this study, we enrolled 107 GC patients and grouped them as HP(-)DM(-) group, HP(+)DM(-) group and HP(+)DM(+) group. Bisulphite sequencing PCR evaluated methylation of PTEN promoter. Quantitative real-time PCR, immunohistochemistry and Western blot, immunofluorescence, flow cytometry and MTT assay were performed accordingly. DNA methylation of PTEN promoter was synergistically enhanced in HP(+)DM(+) patients, and the expression of PTEN was suppressed in HP(+)DM(+) patients. Cell apoptosis was decreased in HP(+)DM(+) group. Metformin showed an apparent effect on restoring CagA-induced elevation of PTEN promoter methylation, thus attenuating the PTEN expression. The reduced PTEN level led to increased proliferation and inhibited apoptosis of HGC-27 cells. In this study, we collected GC tumour tissues from GC patients with or without DM/HP to compare their PTEN methylation and expression while testing the effect of metformin on the methylation of PTEN promoter. In summary, our study suggested that DM could strengthen the tumorigenic effect of HP by promoting the PTEN promoter methylation, while metformin reduces GC risk by suppressing PTEN promoter methylation.
Collapse
Affiliation(s)
- Huibin Lu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kewei Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongming Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Quanhui Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Leite M, Marques MS, Melo J, Pinto MT, Cavadas B, Aroso M, Gomez-Lazaro M, Seruca R, Figueiredo C. Helicobacter Pylori Targets the EPHA2 Receptor Tyrosine Kinase in Gastric Cells Modulating Key Cellular Functions. Cells 2020; 9:cells9020513. [PMID: 32102381 PMCID: PMC7072728 DOI: 10.3390/cells9020513] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori, a stomach-colonizing Gram-negative bacterium, is the main etiological factor of various gastroduodenal diseases, including gastric adenocarcinoma. By establishing a life-long infection of the gastric mucosa, H. pylori continuously activates host-signaling pathways, in particular those associated with receptor tyrosine kinases. Using two different gastric epithelial cell lines, we show that H. pylori targets the receptor tyrosine kinase EPHA2. For long periods of time post-infection, H. pylori induces EPHA2 protein downregulation without affecting its mRNA levels, an effect preceded by receptor activation via phosphorylation. EPHA2 receptor downregulation occurs via the lysosomal degradation pathway and is independent of the H.pylori virulence factors CagA, VacA, and T4SS. Using small interfering RNA, we show that EPHA2 knockdown affects cell–cell and cell–matrix adhesion, invasion, and angiogenesis, which are critical cellular processes in early gastric lesions and carcinogenesis mediated by the bacteria. This work contributes to the unraveling of the underlying mechanisms of H. pylori–host interactions and associated diseases. Additionally, it raises awareness for potential interference between H. pylori infection and the efficacy of gastric cancer therapies targeting receptors tyrosine kinases, given that infection affects the steady-state levels and dynamics of some receptor tyrosine kinases (RTKs) and their signaling pathways.
Collapse
Affiliation(s)
- Marina Leite
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- Department of Pathology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Correspondence: (M.L.); (C.F.); Tel.: +351-220-408-800 (M.L. & C.F.)
| | - Miguel S. Marques
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
| | - Joana Melo
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marta T. Pinto
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
| | - Bruno Cavadas
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Miguel Aroso
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Gomez-Lazaro
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Raquel Seruca
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- Department of Pathology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Ceu Figueiredo
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- Department of Pathology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Correspondence: (M.L.); (C.F.); Tel.: +351-220-408-800 (M.L. & C.F.)
| |
Collapse
|
6
|
Backert S, Haas R, Gerhard M, Naumann M. The Helicobacter pylori Type IV Secretion System Encoded by the cag Pathogenicity Island: Architecture, Function, and Signaling. Curr Top Microbiol Immunol 2018. [DOI: 10.1007/978-3-319-75241-9_8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Abstract
Helicobacter pylori is responsible for the most commonly found infection in the world's population. It is the major risk factor for gastric cancer development. Numerous studies published over the last year provide new insights into the strategies employed by H. pylori to adapt to the extreme acidic conditions of the gastric environment, to establish persistent infection and to deregulate host functions, leading to gastric pathogenesis and cancer. In this review, we report recent data on the mechanisms involved in chemotaxis, on the essential role of nickel in acid resistance and gastric colonization, on the importance of adhesins and Hop proteins and on the role of CagPAI-components and CagA. Among the host functions, a special focus has been made on the escape from immune response, the ability of bacteria to induce genetic instability and modulate telomeres, the mechanism of autophagy and the deregulation of micro RNAs.
Collapse
Affiliation(s)
- Vania Camilo
- Pasteur Institute, Department of Microbiology, Helicobacter Pathogenesis Unit, Paris Cedex 15, France.,INSERM U1173, Faculty of Health Sciences Simone Veil, Université Versailles-Saint-Quentin, Saint Quentin en Yvelines, France
| | - Toshiro Sugiyama
- Graduate School of Medicine and Pharmaceutical Sciences, Department of Gastroenterology, University of Toyama, Sugitani, Toyama, Japan
| | - Eliette Touati
- Pasteur Institute, Department of Microbiology, Helicobacter Pathogenesis Unit, Paris Cedex 15, France
| |
Collapse
|
8
|
Sakurai H. Non-canonical Activation of Receptor Tyrosine Kinases in Cancer Progression. YAKUGAKU ZASSHI 2017; 137:141-144. [PMID: 28154322 DOI: 10.1248/yakushi.16-00229-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Receptor tyrosine kinases (RTKs) are known to be key regulators of cancer cell proliferation, migration, invasion and metastatic spread. Ligand-binding to the extracellular domain triggers canonical activation of the intracellular tyrosine kinase domain. In contrast, it has become evident that RTKs are also regulated by non-canonical tyrosine kinase-independent mechanisms via phosphorylation of their serine/threonine residues. In this review, I mainly introduce our recent findings on the non-canonical regulation of epidermal growth factor receptor (EGFR), ErbB2 and erythropoietin-producing hepatocellular receptor A2 (EphA2), and discuss the roles of non-canonical activation of RTKs in cancer progression and resistance to targeted cancer agents. Further characterization of non-canonical regulation will contribute to the development of new target cancer therapies.
Collapse
Affiliation(s)
- Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
9
|
Kawasaki Y, Sakimura A, Park CM, Tomaru R, Tanaka T, Ozawa T, Zhou Y, Narita K, Kishi H, Muraguchi A, Sakurai H. Feedback control of ErbB2 via ERK-mediated phosphorylation of a conserved threonine in the juxtamembrane domain. Sci Rep 2016; 6:31502. [PMID: 27531070 PMCID: PMC4987620 DOI: 10.1038/srep31502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 07/22/2016] [Indexed: 12/30/2022] Open
Abstract
Tyrosine kinase activity of the asymmetric EGFR homodimer is negatively regulated via ERK-mediated phosphorylation of Thr-669 in the juxtamembrane domain. In the present study, we investigated in human breast cancer cells whether a similar mechanism plays a role in the feedback regulation of the ErbB2/ErbB3 heterodimer, the most potent ErbB receptor dimer. Constitutive tyrosine phosphorylation of ErbB2 and ErbB3 was significantly decreased in phorbol ester- and growth factor-treated BT-474 and MDA-MB-453 cells. In contrast to the decreased tyrosine phosphorylation, Phos-tag Western blot analysis revealed that TPA induced phosphorylation of ErbB2 in an ERK-dependent manner. The target threonine residue corresponding to EGFR Thr-669 and the surrounding residues are highly conserved in ErbB2, but not in ErbB3. Therefore, we demonstrated ERK-mediated phosphorylation of ErbB2 at Thr-677 by generating phospho-specific monoclonal antibodies. Moreover, treatment with trametinib and SCH772984, inhibitors of the MEK-ERK pathway, and substitution of Thr-677 to alanine impaired the feedback inhibition of ErbB2 and ErbB3. These results demonstrated that ERK-mediated phosphorylation of the conserved threonine is a common mechanism for the negative feedback control of active ErbB receptor dimers.
Collapse
Affiliation(s)
- Yuki Kawasaki
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Ayaka Sakimura
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Chul Min Park
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Rika Tomaru
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Tomohiro Tanaka
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Tatsuhiko Ozawa
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Yue Zhou
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Kaori Narita
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Atsushi Muraguchi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| |
Collapse
|
10
|
Muhammad JS, Zaidi SF, Zhou Y, Sakurai H, Sugiyama T. Novel epidermal growth factor receptor pathway mediates release of human β-defensin 3 fromHelicobacter pylori-infected gastric epithelial cells. Pathog Dis 2016; 74:ftv128. [DOI: 10.1093/femspd/ftv128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2015] [Indexed: 12/11/2022] Open
|
11
|
Refaat A, Abdelhamed S, Saiki I, Sakurai H. Inhibition of p38 mitogen-activated protein kinase potentiates the apoptotic effect of berberine/tumor necrosis factor-related apoptosis-inducing ligand combination therapy. Oncol Lett 2015; 10:1907-1911. [PMID: 26622773 DOI: 10.3892/ol.2015.3494] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 05/29/2015] [Indexed: 12/12/2022] Open
Abstract
It was previously reported that berberine (BBR) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) exhibited a synergistic apoptotic effect on triple negative breast cancer (TNBC) cells. In addition, the BBR/TRAIL combination treatment sensitized TRAIL-resistant TNBC cells to TRAIL. The aim of the present study was to investigate a novel pathway for enhancing the apoptotic effect of BBR/TRAIL through mitogen-activated protein kinases (MAPKs). Selective inhibitors and small interfering RNAs were utilized to understand the role of p38 MAPK in this pathway. The results demonstrated that p38 MAPK was activated in response to the combination therapy in TRAIL-resistant TNBC cells. In addition, it was revealed that the inhibition of p38 enhanced apoptosis in epidermal growth factor receptor (EGFR)-overexpressing MDA-MB-468 TNBC cells and EGFR-mutant PC-9 non-small-cell lung carcinoma cells, which was associated with the downregulation of EGFR serine phosphorylation. Viability assays for these two cell lines also confirmed the significant reduction of cell viability following p38 inhibition in BBR/TRAIL-treated cells. In conclusion, the present study provided novel evidence for the role of p38 in suppressing BBR/TRAIL-mediated apoptosis and its association with EGFR, which may explain the mechanism of treatment resistance in certain types of cancer.
Collapse
Affiliation(s)
- Alaa Refaat
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan ; Division of Cancer Cell Biology, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan ; Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza 12588, Egypt
| | - Sherif Abdelhamed
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Ikuo Saiki
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Hiroaki Sakurai
- Division of Cancer Cell Biology, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|