1
|
Mrdjen I, Lee J, Weghorst CM, Knobloch TJ. Impact of Cyanotoxin Ingestion on Liver Cancer Development Using an At-Risk Two-Staged Model of Mouse Hepatocarcinogenesis. Toxins (Basel) 2022; 14:toxins14070484. [PMID: 35878222 PMCID: PMC9320861 DOI: 10.3390/toxins14070484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
Exposure to cyanobacterial hepatotoxins has been linked to the promotion and increased incidence of liver cancer in pre-clinical and epidemiologic studies. The family of hepatotoxins, microcystins (MCs), are produced by over 40 cyanobacterial species found in harmful algal blooms (HABs) worldwide, with MC-LR being the most common and potent MC congener. In the current study, we hypothesized that the low-dose chronic ingestion of Microcystis cyanotoxins via drinking water would promote liver carcinogenesis in pre-initiated mice. Four groups of C3H/HeJ mice received one intraperitoneal (i.p.) injection of diethylnitrosamine (DEN) at 4 weeks of age. Three weeks later, the mice were administered ad libitum drinking water containing one of the following: (1) reverse osmosis, deionized water; (2) water containing 500 mg/L phenobarbital (PB500); (3) water with purified MC-LR (10 µg/L) added; or (4) water containing lysed Microcystis aeruginosa (lysate; 10 µg/L total MCs). The exposure concentrations were based on environmentally relevant concentrations and previously established Ohio EPA recreational water MC guidelines. Throughout the 30-week exposure, mouse weights, food consumption, and water consumption were not significantly impacted by toxin ingestion. We found no significant differences in the number of gross and histopathologic liver lesion counts across the treatment groups, but we did note that the PB500 group developed lesion densities too numerous to count. Additionally, the proportion of lesions classified as hepatocellular carcinomas in the MC-LR group (44.5%; p < 0.05) and lysate group (55%; p < 0.01) was significantly higher compared to the control group (14.9%). Over the course of the study, the mice ingesting the lysate also had a significantly lower survival probability (64.4%; p < 0.001) compared to water (96.8%), PB500 (95.0%), and MC-LR (95.7%) exposures. Using cyanotoxin levels at common recreational water concentration levels, we demonstrate the cancer-promoting effects of a single cyanotoxin MC congener (MC-LR). Furthermore, we show enhanced hepatocarcinogenesis and significant mortality associated with combinatorial exposure to the multiple MCs and bioactive compounds present in lysed cyanobacterial cells—a scenario representative of the ingestion exposure route, such as HAB-contaminated water and food.
Collapse
Affiliation(s)
- Igor Mrdjen
- College of Public Health, Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA; (I.M.); (J.L.); (C.M.W.)
| | - Jiyoung Lee
- College of Public Health, Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA; (I.M.); (J.L.); (C.M.W.)
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Christopher M. Weghorst
- College of Public Health, Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA; (I.M.); (J.L.); (C.M.W.)
| | - Thomas J. Knobloch
- College of Public Health, Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA; (I.M.); (J.L.); (C.M.W.)
- Correspondence:
| |
Collapse
|
2
|
Ahari H, Nowruzi B, Anvar AA, Porzani SJ. The Toxicity Testing of Cyanobacterial Toxins In Vivo and In Vitro by Mouse Bioassay: A Review. Mini Rev Med Chem 2021; 22:1131-1151. [PMID: 34720080 DOI: 10.2174/1389557521666211101162030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 11/22/2022]
Abstract
Different biological methods based on bioactivity are available to detect cyanotoxins, including neurotoxicity, immunological interactions, hepatotoxicity, cytotoxicity, and enzymatic activity. The mouse bioassay is the first test employed in laboratory cultures, cell extracts, and water bloom materials to detect toxins. It is also used as a traditional method to estimate the LD50. Concerning the ease of access and low cost, it is the most common method for this purpose. In this method, a sample is injected intraperitoneally into adult mice, and accordingly, they are assayed and monitored for about 24 hours for toxic symptoms. The toxin can be detected using this method from minutes to a few hours; its type, e.g., hepatotoxin, neurotoxin, etc., can also be determined. However, this method is nonspecific, fails to detect low amounts, and cannot distinguish between homologues. Although the mouse bioassay is gradually replaced with new chemical and immunological methods, it is still the main technique to detect the bioactivity and efficacy of cyanotoxins using LD50 determined based on the survival time of animals exposed to the toxin. In addition, some countries oppose animal use in toxicity studies. However, high cost, ethical considerations, low-sensitivity, non-specificity, and prolonged processes persuade researchers to employ chemical and functional analysis techniques. The qualitative and quantitative analyses, as well as high specificity and sensitivity, are among the advantages of cytotoxicity tests to investigate cyanotoxins. The present study aimed at reviewing the results obtained from in-vitro and in-vivo investigations of the mouse bioassay to detect cyanotoxins, including microcystins, cylindrospermopsin, saxitoxins, etc.
Collapse
Affiliation(s)
- Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran. Iran
| | - Bahareh Nowruzi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran. Iran
| | - Amir Ali Anvar
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran. Iran
| | - Samaneh Jafari Porzani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran. Iran
| |
Collapse
|
3
|
Mao Y, Zong Z, Dang Y, Yu L, Liu C, Wang J. Promotion effect of microcystin-LR on liver tumor progression in kras V12 transgenic zebrafish following acute or subacute exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112673. [PMID: 34438271 DOI: 10.1016/j.ecoenv.2021.112673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Microcystin-LR (MC-LR) is widely distributed in the natural environment and causes hepatotoxicity. However, whether MC-LR promotes liver tumor progression remains controversial. krasV12 transgenic zebrafish were used as an inducible liver tumor model to evaluate the potential tumor-promoting effect of MC-LR. First, krasV12 transgenic larvae were exposed to 0, 0.1 and 1 mg/L MC-LR with 20 mg/L doxycycline (Dox) for 4 d. The gray values and histopathological examinations of the liver demonstrated that MC-LR aggravated liver tumor progression, which could be inhibited by the Protein arginine methyltransferase 5 (Prmt5) inhibitor compound 5 (CMP5). Second, 1-month-old juvenile transgenic zebrafish were exposed to 0, 20 mg/L Dox, 1 μg/L MC-LR, and 20 mg/L Dox with 0.1 or 1 μg/L MC-LR for 15 d to determine whether the exposure to environmental concentrations of MC-LR promoted hepatocellular carcinoma (HCC) progression. We found that environmental concentrations of MC-LR increased the hepatosomatic index (HSI) and gray value (intensity/area) and promoted HCC progression. The results indicate that environmental concentrations of MC-LR have the potential to promote liver tumor progression. Taken together, the present study demonstrates that MC-LR can promote tumor in krasV12 transgenic zebrafish and that the upregulation of prmt5 expression might contribute to MC-LR-mediated promotion of liver tumorigenesis.
Collapse
Affiliation(s)
- Yuchao Mao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zijing Zong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Applicability of Scrape Loading-Dye Transfer Assay for Non-Genotoxic Carcinogen Testing. Int J Mol Sci 2021; 22:ijms22168977. [PMID: 34445682 PMCID: PMC8396440 DOI: 10.3390/ijms22168977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022] Open
Abstract
Dysregulation of gap junction intercellular communication (GJIC) is recognized as one of the key hallmarks for identifying non-genotoxic carcinogens (NGTxC). Currently, there is a demand for in vitro assays addressing the gap junction hallmark, which would have the potential to eventually become an integral part of an integrated approach to the testing and assessment (IATA) of NGTxC. The scrape loading-dye transfer (SL-DT) technique is a simple assay for the functional evaluation of GJIC in various in vitro cultured mammalian cells and represents an interesting candidate assay. Out of the various techniques for evaluating GJIC, the SL-DT assay has been used frequently to assess the effects of various chemicals on GJIC in toxicological and tumor promotion research. In this review, we systematically searched the existing literature to gather papers assessing GJIC using the SL-DT assay in a rat liver epithelial cell line, WB-F344, after treating with chemicals, especially environmental and food toxicants, drugs, reproductive-, cardio- and neuro-toxicants and chemical tumor promoters. We discuss findings derived from the SL-DT assay with the known knowledge about the tumor-promoting activity and carcinogenicity of the assessed chemicals to evaluate the predictive capacity of the SL-DT assay in terms of its sensitivity, specificity and accuracy for identifying carcinogens. These data represent important information with respect to the applicability of the SL-DT assay for the testing of NGTxC within the IATA framework.
Collapse
|
5
|
Chen JG, Zhu J, Zhang YH, Chen YS, Lu JH, Zhu YR, Chen HZ, Shen AG, Wang GR, Groopman JD, Kensler TW. Liver cancer mortality over six decades in an epidemic area: what we have learned. PeerJ 2021; 9:e10600. [PMID: 33604165 PMCID: PMC7866902 DOI: 10.7717/peerj.10600] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND AIMS Liver cancer is one of the most dominant malignant tumors in the world. The trends of liver cancer mortality over the past six decades have been tracked in the epidemic region of Qidong, China. Using epidemiological tools, we explore the dynamic changes in age-standardized rates to characterize important aspects of liver cancer etiology and prevention. METHODS Mortality data of liver cancer in Qidong from 1958 to 1971 (death retrospective survey) and from 1972 to 2017 (cancer registration) were tabulated for the crude rate (CR), and age-standardized rate and age-birth cohorts. The average annual percentage change was calculated by the Joinpoint Regression Program. RESULTS The natural death rate during 1958-2017 decreased from 9‰ to 5.4‰ and then increased to 8‰ as the population aged; cancer mortality rates rose continuously from 57/105 to 240/105. Liver cancer mortality increased from 20/105 to 80/105, and then dropped to less than 52/105 in 2017. Liver cancer deaths in 1972-2017 accounted for 30.53% of all cancers, with a CR of 60.48/105, age-standardized rate China (ASRC) of 34.78/105, and ASRW (world) of 45.71/105. Other key features were the CR for males and females of 91.86/105 and 29.92/105, respectively, with a sex ratio of 3.07:1. Period analysis showed that the ASRs for mortality of the age groups under 54 years old had a significant decreasing trend. Importantly, birth cohort analysis showed that the mortality rate of liver cancer in 40-44, 35-39, 30-34, 25-29, 20-24, 15-19 years cohort decreased considerably, but the rates in 70-74, and 75+ increased. CONCLUSIONS The crude mortality rate of liver cancer in Qidong has experienced trends from lower to higher levels, and from continued increase at a high plateau to most recently a gradual decline, and a change greatest in younger people. Many years of comprehensive prevention and intervention measures have influenced the decline of the liver cancer epidemic in this area. The reduction of intake levels of aflatoxin might be one of the most significant factors as evidenced by the dramatic decline of exposure biomarkers in this population during the past three decades.
Collapse
Affiliation(s)
- Jian-Guo Chen
- Department of Epidemiology, Qidong Liver Cancer Institute / Qidong People’s Hospital / Affiliated Qidong Hospital of Nantong University, Qidong, Jiangsu, China
- Department of Epidemiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jian Zhu
- Department of Epidemiology, Qidong Liver Cancer Institute / Qidong People’s Hospital / Affiliated Qidong Hospital of Nantong University, Qidong, Jiangsu, China
| | - Yong-Hui Zhang
- Department of Epidemiology, Qidong Liver Cancer Institute / Qidong People’s Hospital / Affiliated Qidong Hospital of Nantong University, Qidong, Jiangsu, China
| | - Yong-Sheng Chen
- Department of Epidemiology, Qidong Liver Cancer Institute / Qidong People’s Hospital / Affiliated Qidong Hospital of Nantong University, Qidong, Jiangsu, China
| | - Jian-Hua Lu
- Department of Epidemiology, Qidong Liver Cancer Institute / Qidong People’s Hospital / Affiliated Qidong Hospital of Nantong University, Qidong, Jiangsu, China
| | - Yuan-Rong Zhu
- Department of Epidemiology, Qidong Liver Cancer Institute / Qidong People’s Hospital / Affiliated Qidong Hospital of Nantong University, Qidong, Jiangsu, China
| | - Hai-Zhen Chen
- Department of Epidemiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ai-Guo Shen
- Department of Epidemiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Gao-Ren Wang
- Department of Epidemiology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - John D. Groopman
- Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Thomas W. Kensler
- Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD, United States of America
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| |
Collapse
|
6
|
Basu A, Dydowiczová A, Čtveráčková L, Jaša L, Trosko JE, Bláha L, Babica P. Assessment of Hepatotoxic Potential of Cyanobacterial Toxins Using 3D In Vitro Model of Adult Human Liver Stem Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10078-10088. [PMID: 30059226 DOI: 10.1021/acs.est.8b02291] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cyanotoxins microcystin-LR (MC-LR) and cylindrospermopsin (CYN) represent hazardous waterborne contaminants and potent human hepatotoxins. However, in vitro monolayer cultures of hepatic cell lines were found to recapitulate, poorly, major hepatocyte-specific functions and inadequately predict hepatotoxic effects of MC-LR and CYN. We utilized 3-dimensional (3D), scaffold-free spheroid cultures of human telomerase-immortalized adult liver stem cells HL1-hT1 to evaluate hepatotoxic potential of MC-LR and CYN. In monolayer cultures of HL1-hT1 cells, MC-LR did not induce cytotoxic effects (EC50 > 10 micromol/L), while CYN inhibited cell growth and viability (48h-96h EC50 ≈ 5.5-0.6 micromol/L). Growth and viability of small growing spheroids were inhibited by both cyanotoxins (≥0.1 micromol/L) and were associated with blebbing and disintegration at the spheroid surface. Hepatospheroid damage and viability reduction were observed also in large mature spheroids, with viability 96h-EC50 values being 0.04 micromol/L for MC-LR and 0.1 micromol/L for CYN, and No Observed Effect Concentrations <0.01 micromol/L. Spheroid cultures of adult human liver stem cells HL1-hT1 exhibit sensitivity comparable to cultures of primary hepatocytes and provide a simple, practical, and cost-effective tool, which can be effectively used in environmental and toxicological research, including assessment of hepatotoxic potential and effect-based monitoring of various samples contaminated with toxic cyanobacteria.
Collapse
Affiliation(s)
- Amrita Basu
- RECETOX, Faculty of Science , Masaryk University , Kamenice 753/5 , Brno 625 00 , Czech Republic
| | - Aneta Dydowiczová
- RECETOX, Faculty of Science , Masaryk University , Kamenice 753/5 , Brno 625 00 , Czech Republic
| | - Lucie Čtveráčková
- RECETOX, Faculty of Science , Masaryk University , Kamenice 753/5 , Brno 625 00 , Czech Republic
| | - Libor Jaša
- RECETOX, Faculty of Science , Masaryk University , Kamenice 753/5 , Brno 625 00 , Czech Republic
| | - James E Trosko
- Department of Pediatrics and Human Development & Institute for Integrative Toxicology , Michigan State University , 1129 Farm Lane , East Lansing , 48824 Michigan , United States
| | - Luděk Bláha
- RECETOX, Faculty of Science , Masaryk University , Kamenice 753/5 , Brno 625 00 , Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science , Masaryk University , Kamenice 753/5 , Brno 625 00 , Czech Republic
| |
Collapse
|
7
|
Dar HY, Lone Y, Koiri RK, Mishra PK, Srivastava RK. Microcystin-leucine arginine (MC-LR) induces bone loss and impairs bone micro-architecture by modulating host immunity in mice: Implications for bone health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:792-802. [PMID: 29626823 DOI: 10.1016/j.envpol.2018.03.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/28/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Osteoporosis or enhanced bone loss is one of the most commonly occurring bone conditions in the world, responsible for higher incidence of fractures leading to increased morbidity and mortality in adults. Bone loss is affected by various environmental factors including diet, age, drugs, toxins etc. Microcystins are toxins produced by cyanobacteria with microcystin-LR being the most abundantly found around the world effecting both human and animal health. The present study demonstrates that MC-LR treatment induces bone loss and impairs both trabecular and cortical bone microarchitecture along with decreasing the mineral density and heterogeneity of bones in mice. This effect of MC-LR was found due to its immunomodulatory effects on the host immune system, wherein MC-LR skews both T cell (CD4+ and CD8+ T cells) and B cell populations in various lymphoid tissues. MC-LR further was found to significantly enhance the levels of osteoclastogenic cytokines (IL-6, IL-17 and TNF-α) along with simultaneously decreasing the levels of anti-osteoclastogenic cytokines (IL-10 and IFN-γ). Taken together, our study for the first time establishes a direct link between MC-LR intake and enhanced bone loss thereby giving a strong impetus to the naïve field of "osteo-toxicology", to delineate the effects of various toxins (including cyanotoxins) on bone health.
Collapse
Affiliation(s)
- Hamid Y Dar
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 70003, India
| | - Yaqoob Lone
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 70003, India
| | - Raj Kumar Koiri
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 70003, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, MP, 462001, India
| | - Rupesh K Srivastava
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 70003, India; Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
8
|
Chen L, Giesy JP, Xie P. The dose makes the poison. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:649-653. [PMID: 29197283 DOI: 10.1016/j.scitotenv.2017.11.218] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/18/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
Some microcystins (MCs) might cause hepatotoxicity in animals and humans. MC-LR is also a tumor promoter and a suspect carcinogen. In 2010, the International Agency for Research on Cancer (IARC) classified MC-LR as a possible human carcinogen (Group 2B). Recently, an article entitled "Long-term, low-dose exposure to microcystin toxin does not increase the risk of liver tumor development or growth in mice" was published in Hepatology Research by Meaghan Labine and Gerald Y. Minuk. However, the experimental design was flawed and the conclusion is misleading. 1μg/L MC-LR in drinking water is the provisional guideline value established by the World Health Organization (WHO) for humans in 1998, based on a tolerable daily intake (TDI) of 0.04μg/kg body mass (BM). Assuming the mice drink 1.5mL/10g BM of water per day, the exposure dose would be 0.15μg/kg/d BM, about 270-fold less than 40μg/kg/d, the no-observed-adverse-effect level (NOAEL). Thus, the dose of MC-LR was too small and "unlikely to result in liver tumor development or enhance existing tumor growth", even with a long-term (28weeks) exposure. Presumably, they didn't consider inter-species variations between mice and humans, including toxicokinetics and toxicodynamics. Ranges of "low-dose" MCs for animals and humans should be defined. Also, the authors misunderstood or misrepresented several previous studies. Before drawing final conclusions on the carcinogenicity of MCs, further well-designed experiments are warranted.
Collapse
Affiliation(s)
- Liang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N5B3, Canada.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China.
| |
Collapse
|
9
|
Tumor-promoting cyanotoxin microcystin-LR does not induce procarcinogenic events in adult human liver stem cells. Toxicol Appl Pharmacol 2018. [PMID: 29534881 DOI: 10.1016/j.taap.2018.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
HL1-hT1 cell line represents adult human liver stem cells (LSCs) immortalized with human telomerase reverse transcriptase. In this study, HL1-hT1 cells were found to express mesenchymal markers (vimentin, CD73, CD90/THY-1 and CD105) and an early hepatic endoderm marker FOXA2, while not expressing hepatic progenitor (HNF4A, LGR5, α-fetoprotein) or differentiated hepatocyte markers (albumin, transthyretin, connexin 32). In response to microcystin-LR (MC-LR), a time- and concentration-dependent formation of MC-positive protein bands in HL1-hT1 cells was observed. Cellular accumulation of MC-LR occurred most likely via mechanisms independent on organic anion transporting polypeptides (OATPs) or multidrug resistance (MDR) proteins, as indicated (a) by a gene expression analysis of 11 human OATP genes and 4 major MDR genes (MDR1/P-glycoprotein, MRP1, MRP2 and BCRP); (b) by non-significant effects of OATP or MDR1 inhibitors on MC-LR uptake. Accumulation of MC-positive protein bands in HL1-hT1 cells was associated neither with alterations of cell viability and growth, dysregulations of ERK1/2 and p38 kinases, reactive oxygen species formation, induction of double-stranded DNA breaks nor modulations of stress-inducible genes (ATF3, HSP5). It suggests that LSCs might have a selective, MDR1-independent, survival advantage and higher tolerance towards MC-induced cytotoxic, genotoxic or cancer-related events than differentiated adult hepatocytes, fetal hepatocyte or malignant liver cell lines. HL1-hT1 cells provide a valuable in vitro tool for studying effects of toxicants and pharmaceuticals on LSCs, whose important role in the development of chronic toxicities and liver diseases is being increasingly recognized.
Collapse
|
10
|
Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 2017; 91:1049-1130. [DOI: 10.1007/s00204-016-1913-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
|
11
|
Lin H, Liu W, Zeng H, Pu C, Zhang R, Qiu Z, Chen JA, Wang L, Tan Y, Zheng C, Yang X, Tian Y, Huang Y, Luo J, Luo Y, Feng X, Xiao G, Feng L, Li H, Wang F, Yuan C, Wang J, Zhou Z, Wei T, Zuo Y, Wu L, He L, Guo Y, Shu W. Determination of Environmental Exposure to Microcystin and Aflatoxin as a Risk for Renal Function Based on 5493 Rural People in Southwest China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5346-56. [PMID: 27071036 DOI: 10.1021/acs.est.6b01062] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Although the nephrotoxicity of microcystin and aflatoxin has been observed in animal and clinical cases, few population data are available. We conducted a cross-sectional study in Southwest China to investigate the association of renal function indicators (RFIs, including BUN, SCr, and eGFR) with exposure to microcystin and aflatoxin in 5493 members of the general population. Microcystin-LR levels in water and aquatic products and aflatoxin B1 levels in daily foods were measured by ELISA, and individual estimated daily intake (EDI) was assessed on the basis of the measurement and questionnaire. We found that participants with abnormal RFIs had a much higher mean level of microcystin-LR EDI than those with normal RFIs and that there was a significant increasing trend for abnormal rates and odds ratios of RFIs with increasing microcystin-LR EDI quartiles (p for trend = 0.000). Compared with the lowest quartile of microcystin-LR exposure, those in the highest quartile had significantly higher risks of abnormal BUN (OR = 1.80, 95% CI = 1.34-2.42), SCr (OR = 4.58, 95% CI = 2.92-7.21), and eGFR (OR = 4.41, 95% CI = 2.55-7.63), respectively, but no higher risk was found in subjects with higher AFB1 exposure. After adjustment for confounding factors, risk associations with microcystin-LR persisted. Consequently, our results suggest that microcystin, rather than aflatoxin, might be one important risk of renal-function impairment.
Collapse
Affiliation(s)
| | | | | | - Chaowen Pu
- The Center for Disease Control and Prevention in Fuling District , Chongqing, 408000 China
| | - Renping Zhang
- The Center for Disease Control and Prevention in Fuling District , Chongqing, 408000 China
| | | | | | | | | | | | | | - Yingqiao Tian
- The Center for Disease Control and Prevention in Fuling District , Chongqing, 408000 China
| | | | | | | | | | - Guosheng Xiao
- College of Life Science and Engineering, Chongqing Three Gorges University , Wanzhou, Chongqing, 404100 China
| | - Lei Feng
- The Center for Disease Control and Prevention in Fuling District , Chongqing, 408000 China
| | - Heng Li
- The Center for Disease Control and Prevention in Fuling District , Chongqing, 408000 China
| | - Feng Wang
- Township Central Hospital in Yihe Town , Fuling District, Chongqing, 408104 China
| | - Changyou Yuan
- Community Health Service Center in Lidu Town , Fuling District, Chongqing, 408103 China
| | | | | | | | | | | | | | | | | |
Collapse
|