1
|
Erlmeier M, Mikuteit M, Zschäbitz S, Autenrieth M, Weichert W, Hartmann A, Steffens S, Erlmeier F. Immunohistochemical expression of the hepatocyte growth factor in chromophobe renal cell carcinoma. BMC Urol 2023; 23:90. [PMID: 37170275 PMCID: PMC10176764 DOI: 10.1186/s12894-023-01263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 04/28/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND The prognostic value of Hepatocyte growth factor (HGF) in non-clear cell renal cell carcinoma (RCC) is still unclear. The aim of this study is to evaluate the prognostic impact of HGF expression in a large cohort of chromophobe RCC (chRCC). METHODS Patients who underwent renal surgery due to chRCC were recruited. Clinical data was retrospectively evaluated. Tumor specimen were analyzed for HGF expression by immunohistochemistry. RESULTS 81 chRCC patients were eligible for analysis, thereof 37 (45.7%) patients were positive for HGF. No significant associations were found for HGF expression and clinical attributes in patients with chRCC. Kaplan-Meier analysis revealed no differences in 5-year overall survival (OS) for patients with HGF- compared to HGF+ tumors (95.0% versus 90.9%; p = 0.410). CONCLUSIONS In chRCC HGF expression is not associated with parameters of aggressiveness or survival.
Collapse
Affiliation(s)
| | - Marie Mikuteit
- Department for Rheumatology and Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Stefanie Zschäbitz
- Dept. of Medical Oncology, National Center of Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Autenrieth
- Department of Urology, Technical University of Munich, Klinikum Rechts der Isar, München, Germany
| | - Wilko Weichert
- Institute for Pathology and Pathological Anatomy, Technical University Munich, Munich, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital of Erlangen, Erlangen, Germany
| | - Sandra Steffens
- Department for Rheumatology and Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Department of Urology, University Hospital Münster, Münster, Germany
| | - Franziska Erlmeier
- Institute of Pathology, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
2
|
Gulla A, Andriusaityte U, Zdanys GT, Babonaite E, Strupas K, Kelly H. The Impact of Epithelial-Mesenchymal Transition and Metformin on Pancreatic Cancer Chemoresistance: A Pathway towards Individualized Therapy. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:467. [PMID: 35454306 PMCID: PMC9032206 DOI: 10.3390/medicina58040467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022]
Abstract
Globally, pancreatic ductal adenocarcinoma remains among the most aggressive forms of neoplastic diseases, having a dismal prognostic outcome. Recent findings elucidated that epithelial-mesenchymal transition (EMT) can play an important role in pancreatic tumorigenic processes, as it contributes to the manifestation of malignant proliferative masses, which impede adequate drug delivery. An organized literature search with PubMed, Scopus, Microsoft Academic and the Cochrane library was performed for articles published in English from 2011 to 2021 to review and summarize the latest updates and knowledge on the current understanding of EMT and its implications for tumorigenesis and chemoresistance. Furthermore, in the present paper, we investigate the recent findings on metformin as a possible neoadjuvant chemotherapy agent, which affects EMT progression and potentially provides superior oncological outcomes for PDAC patients. Our main conclusions indicate that selectively suppressing EMT in pancreatic cancer cells has a promising therapeutic utility by selectively targeting the chemotherapy-resistant sub-population of cancer stem cells, inhibiting tumor growth via EMT pathways and thereby improving remission in PDAC patients. Moreover, given that TGF-β1-driven EMT generates the migration of tumor-initiating cells by directly linking the acquisition of abnormal cellular motility with the maintenance of tumor initiating potency, the chemoprevention of TGF-β1-induced EMT may have promising clinical applications in the therapeutic management of PDAC outcomes.
Collapse
Affiliation(s)
- Aiste Gulla
- Institute of Clinical Medicine, Clinic of Gastroenterology, Surgery, Nephrology, Faculty of Medicine, Vilnius University, Santariskiu Str. 2, 08661 Vilnius, Lithuania;
- Center of Visceral Medicine and Translational Research, Department of Surgery, Georgetown University Hospital, 3800 Reservoir Road Northwest BLES Building 1st. Floor, Washington, DC 20007, USA
| | - Urte Andriusaityte
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, 03101 Vilnius, Lithuania; (U.A.); (G.T.Z.); (E.B.)
| | - Gabrielius Tomas Zdanys
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, 03101 Vilnius, Lithuania; (U.A.); (G.T.Z.); (E.B.)
| | - Elena Babonaite
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, 03101 Vilnius, Lithuania; (U.A.); (G.T.Z.); (E.B.)
| | - Kestutis Strupas
- Institute of Clinical Medicine, Clinic of Gastroenterology, Surgery, Nephrology, Faculty of Medicine, Vilnius University, Santariskiu Str. 2, 08661 Vilnius, Lithuania;
| | - Helena Kelly
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
| |
Collapse
|
3
|
Cazes A, Betancourt O, Esparza E, Mose ES, Jaquish D, Wong E, Wascher AA, Tiriac H, Gymnopoulos M, Lowy AM. A MET Targeting Antibody-Drug Conjugate Overcomes Gemcitabine Resistance in Pancreatic Cancer. Clin Cancer Res 2021; 27:2100-2110. [PMID: 33451980 DOI: 10.1158/1078-0432.ccr-20-3210] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/16/2020] [Accepted: 01/08/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Pancreatic cancer is an aggressive disease associated with a poor 5-year overall survival. Most patients are ineligible for surgery due to late diagnosis and are treated primarily with chemotherapy with very limited success. Pancreatic cancer is relatively insensitive to chemotherapy due to multiple factors, including reduced bioavailability of drugs to tumor cells. One strategy to improve drug efficacy with reduced toxicity is the development of antibody-drug conjugates (ADC), which have now been used successfully to treat both solid and liquid tumors. Here, we evaluate the efficacy of TR1801-ADC, a newly developed ADC composed of a MET antibody conjugated to the highly potent pyrrolobenzodiazepine toxin-linker, tesirine. EXPERIMENTAL DESIGN We first evaluated MET expression and subcellular localization in pancreatic cancer cell lines, human tumors, and patient-derived xenografts (PDX). We then tested TR1801-ADC efficacy in vitro in pancreatic cancer cell lines. Preclinical evaluation of TR1801-ADC efficacy was conducted on PDXs selected on the basis of their MET expression level. RESULTS We show that MET is highly expressed and located at the plasma membrane of pancreatic cancer cells. We found that TR1801-ADC induces a specific cytotoxicity in pancreatic cancer cell lines and a profound tumor growth inhibition, even in a gemcitabine-resistant tumor. We also noted synergism between TR1801-ADC and gemcitabine in vitro and an improved response to the combination in vivo. CONCLUSIONS Together, these results suggest the promise of agents such as TR1801-ADC as a novel approach to the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Alex Cazes
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California San Diego, La Jolla, California
| | | | - Edgar Esparza
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Evangeline S Mose
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Dawn Jaquish
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Eric Wong
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Alexis A Wascher
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Hervé Tiriac
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California San Diego, La Jolla, California
| | | | - Andrew M Lowy
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California San Diego, La Jolla, California.
| |
Collapse
|
4
|
Moosavi F, Giovannetti E, Saso L, Firuzi O. HGF/MET pathway aberrations as diagnostic, prognostic, and predictive biomarkers in human cancers. Crit Rev Clin Lab Sci 2019; 56:533-566. [PMID: 31512514 DOI: 10.1080/10408363.2019.1653821] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is a major cause of death worldwide. MET tyrosine kinase receptor [MET, c-MET, hepatocyte growth factor (HGF) receptor] pathway activation is associated with the appearance of several hallmarks of cancer. The HGF/MET pathway has emerged as an important actionable target across many solid tumors; therefore, biomarker discovery becomes essential in order to guide clinical intervention and patient stratification with the aim of moving towards personalized medicine. The focus of this review is on how the aberrant activation of the HGF/MET pathway in tumor tissue or the circulation can provide diagnostic and prognostic biomarkers and predictive biomarkers of drug response. Many meta-analyses have shown that aberrant activation of the MET pathway in tumor tissue, including MET gene overexpression, gene amplification, exon 14 skipping and other activating mutations, is almost invariably associated with shorter survival and poor prognosis. Most meta-analyses have been performed in non-small cell lung cancer (NSCLC), breast, head and neck cancers as well as colorectal, gastric, pancreatic and other gastrointestinal cancers. Furthermore, several studies have shown the predictive value of MET biomarkers in the identification of patients who gain the most benefit from HGF/MET targeted therapies administered as single or combination therapies. The highest predictive values have been observed for response to foretinib and savolitinib in renal cancer, as well as tivantinib in NSCLC and colorectal cancer. However, some studies, especially those based on MET expression, have failed to show much value in these stratifications. This may be rooted in lack of standardization of methodologies, in particular in scoring systems applied in immunohistochemistry determinations or absence of oncogenic addiction of cancer cells to the MET pathway, despite detection of overexpression. Measurements of amplification and mutation aberrations are less likely to suffer from these pitfalls. Increased levels of MET soluble ectodomain (sMET) in circulation have also been associated with poor prognosis; however, the evidence is not as strong as it is with tissue-based biomarkers. As a diagnostic biomarker, sMET has shown its value in distinguishing cancer patients from healthy individuals in prostate and bladder cancers and in melanoma. On the other hand, increased circulating HGF has also been presented as a valuable prognostic and diagnostic biomarker in many cancers; however, there is controversy on the predictive value of HGF as a biomarker. Other biomarkers such as circulating tumor DNA (ctDNA) and tumor HGF levels have also been briefly covered. In conclusion, HGF/MET aberrations can provide valuable diagnostic, prognostic and predictive biomarkers and represent vital assets for personalized cancer therapy.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) , Amsterdam , The Netherlands.,Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza Onlus , Pisa , Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology, "Vittorio Erspamer," Sapienza University , Rome , Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
5
|
Lu W, Li N, Liao F. Identification of Key Genes and Pathways in Pancreatic Cancer Gene Expression Profile by Integrative Analysis. Genes (Basel) 2019; 10:genes10080612. [PMID: 31412643 PMCID: PMC6722756 DOI: 10.3390/genes10080612] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Pancreatic cancer is one of the malignant tumors that threaten human health. Methods: The gene expression profiles of GSE15471, GSE19650, GSE32676 and GSE71989 were downloaded from the gene expression omnibus database including pancreatic cancer and normal samples. The differentially expressed genes between the two types of samples were identified with the Limma package using R language. The gene ontology functional and pathway enrichment analyses of differentially-expressed genes were performed by the DAVID software followed by the construction of a protein–protein interaction network. Hub gene identification was performed by the plug-in cytoHubba in cytoscape software, and the reliability and survival analysis of hub genes was carried out in The Cancer Genome Atlas gene expression data. Results: The 138 differentially expressed genes were significantly enriched in biological processes including cell migration, cell adhesion and several pathways, mainly associated with extracellular matrix-receptor interaction and focal adhesion pathway in pancreatic cancer. The top hub genes, namely thrombospondin 1, DNA topoisomerase II alpha, syndecan 1, maternal embryonic leucine zipper kinase and proto-oncogene receptor tyrosine kinase Met were identified from the protein–protein interaction network. The expression levels of hub genes were consistent with data obtained in The Cancer Genome Atlas. DNA topoisomerase II alpha, syndecan 1, maternal embryonic leucine zipper kinase and proto-oncogene receptor tyrosine kinase Met were significantly linked with poor survival in pancreatic adenocarcinoma. Conclusions: These hub genes may be used as potential targets for pancreatic cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Wenzong Lu
- Department of Biomedical Engineering, College of Electronic and Information Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Ning Li
- Department of Biomedical Engineering, College of Electronic and Information Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Fuyuan Liao
- Department of Biomedical Engineering, College of Electronic and Information Engineering, Xi'an Technological University, Xi'an 710021, China
| |
Collapse
|
6
|
Lux A, Kahlert C, Grützmann R, Pilarsky C. c-Met and PD-L1 on Circulating Exosomes as Diagnostic and Prognostic Markers for Pancreatic Cancer. Int J Mol Sci 2019; 20:ijms20133305. [PMID: 31284422 PMCID: PMC6651266 DOI: 10.3390/ijms20133305] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Exosomes are membrane vesicles which offer potential as blood derived biomarkers for malign tumors in clinical practice. Pancreatic cancer is counted among cancer diseases with the highest mortality. The present work seeks to assess whether pancreatic carcinomas release exosomes which express c-Met (proto-oncogene mesenchymal-epithelial transition factor) and PD-L1 (programmed cell death 1 ligand 1), and whether the detection of such expression in serum has diagnostic or prognostic meaning for the affected patients. Exosome isolation was performed on culture media of one benign pancreatic cell line and ten pancreatic carcinoma cell lines as well as on serum samples from 55 patients with pancreatic ductal adenocarcinoma (PDAC), 26 patients with chronic pancreatitis and 10 patients with benign serous cyst adenoma of the pancreas. Exosomes were bound to latex beads and stained with antibodies against c-Met or PD-L1. Analysis of fluorescence intensity was performed by flow cytometry. In terms of c-Met, the mean fluorescence intensity of PDAC-patients was significantly higher than the fluorescence intensity of the comparative patients with benign disease (p < 0.001). A diagnostic test based on c-Met resulted in a sensitivity of 70%, a specificity of 85% and a diagnostic odds ratio of 13:2. The specificity of the test can be further improved by combining it with the established tumor marker carbohydrate antigen 19-9 (CA 19-9). In addition, c-Met-positive patients showed a significantly shorter postoperative survival time (9.5 vs. 21.7 months, p < 0.001). In terms of PD-L1, no significant difference between fluorescence intensity of PDAC-patients and comparative patients was detectable. However, PD-L1-positive PDAC-patients also showed a significantly shorter postoperative survival time (7.8 vs. 17.2 months, p = 0.043). Thus, both markers can be considered as negative prognostic factors.
Collapse
Affiliation(s)
- Alexander Lux
- Medizinische Klinik III, Universitätsklinikum Carl Gustav Carus Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Christoph Kahlert
- Klinik und Poliklinik für Viszeral-, Thorax- und Gefäßchirurgie, Universitätsklinikum Carl Gustav Carus Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| |
Collapse
|
7
|
Puleo F, Nicolle R, Blum Y, Cros J, Marisa L, Demetter P, Quertinmont E, Svrcek M, Elarouci N, Iovanna J, Franchimont D, Verset L, Galdon MG, Devière J, de Reyniès A, Laurent-Puig P, Van Laethem JL, Bachet JB, Maréchal R. Stratification of Pancreatic Ductal Adenocarcinomas Based on Tumor and Microenvironment Features. Gastroenterology 2018; 155:1999-2013.e3. [PMID: 30165049 DOI: 10.1053/j.gastro.2018.08.033] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Genomic studies have revealed subtypes of pancreatic ductal adenocarcinoma (PDA) based on their molecular features, but different studies have reported different classification systems. It is a challenge to obtain high-quality, freshly frozen tissue for clinical analysis and determination of PDA subtypes. We aimed to redefine subtypes of PDA using a large number of formalin-fixed and paraffin-embedded PDA samples, which are more amenable to routine clinical evaluation. METHODS We collected PDA samples from 309 consecutive patients who underwent surgery from September 1996 through December 2010 at 4 academic hospitals in Europe; nontumor tissue samples were not included. Samples were formalin fixed and paraffin embedded. DNA and RNA were isolated; gene expression, targeted DNA sequencing, and immunohistochemical analyses were performed. We used independent component analysis to deconvolute normal, tumor, and microenvironment transcriptome patterns in samples. We devised classification systems from an unsupervised analysis using a consensus clustering approach of our data set after removing normal contamination components. We associated subtypes with overall survival and disease-free survival of patients using Cox proportional hazards regression with estimation of hazard ratios and 95% confidence interval. We used The Cancer Genome Consortium and International Cancer Genome Consortium PDA data sets as validation cohorts. RESULTS We validated the previously reported basal-like and classical tumor-specific subtypes of PDAs. We identified features of the PDA, including microenvironment gene expression patterns, that allowed tumors to be categorized into 5 subtypes, called pure basal like, stroma activated, desmoplastic, pure classical, and immune classical. These PDA subtypes have features of cancer cells and immune cells that could be targeted by pharmacologic agents. Tumor subtypes were associated with patient outcomes, based on analysis of our data set and the International Cancer Genome Consortium and The Cancer Genome Consortium PDA data sets. We also observed an exocrine signal associated with acinar cell contamination (from pancreatic tissue). CONCLUSIONS We identified a classification system based on gene expression analysis of formalin-fixed PDA samples. We identified 5 PDA subtypes, based on features of cancer cells and the tumor microenvironment. This system might be used to select therapies and predict patient outcomes. We found evidence that the previously reported exocrine-like (called ADEX) tumor subtype resulted from contamination with pancreatic acinar cells. ArrayExpress accession number: E-MTAB-6134.
Collapse
Affiliation(s)
- Francesco Puleo
- Medical Oncology Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium.
| | - Rémy Nicolle
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, Paris, France
| | - Yuna Blum
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, Paris, France
| | - Jérôme Cros
- Department of Pathology, Beaujon Hospital-Paris Diderot University, Clichy, France
| | - Laetitia Marisa
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, Paris, France
| | | | - Eric Quertinmont
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Magali Svrcek
- Department of Pathology, Saint-Antoine Hospital, Paris, France
| | - Nabila Elarouci
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, Paris, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Denis Franchimont
- Department of Gastroenterology and Digestive Oncology, Erasme Hospital, Brussels, Belgium
| | - Laurine Verset
- Department of Pathology, Erasme Hospital, Brussels, Belgium
| | - Maria Gomez Galdon
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques Devière
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium; Department of Gastroenterology and Digestive Oncology, Erasme Hospital, Brussels, Belgium
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, Paris, France
| | - Pierre Laurent-Puig
- Université Paris Descartes UMRS-1147; Assistance Publique Hopitaux de Paris Hopital Européen Georges Pompidou, Paris, France
| | - Jean-Luc Van Laethem
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium; Department of Gastroenterology and Digestive Oncology, Erasme Hospital, Brussels, Belgium
| | - Jean-Baptiste Bachet
- Sorbonne Universités, UPMC Université, Department of Gastroenterology, Pitié-Salpetriére Hospital, Paris, France
| | - Raphaël Maréchal
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium; Department of Gastroenterology and Digestive Oncology, Erasme Hospital, Brussels, Belgium
| |
Collapse
|
8
|
Prognostic stratification of resected pancreatic ductal adenocarcinoma: Past, present, and future. Dig Liver Dis 2018; 50:979-990. [PMID: 30205952 DOI: 10.1016/j.dld.2018.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the digestive cancer with the poorest prognosis, with a 5-year overall survival rate of 7%. Complete surgical resection followed by adjuvant chemotherapy is the only treatment with curative intent. However, many patients with an apparently localized disease who may undergo primary tumor resection already have micro-metastatic disease and will promptly develop metastases. Considering the significant rate of morbidity and mortality upon pancreatic surgery, the pre-operative identification of patients with an aggressive disease is therefore a major clinical issue. Although tumor size, differentiation, margins, and lymph node invasion are the main "classical" prognostic factors, they are not sufficient to fully predict early disease recurrence. In the last decade, multi-omics high-throughput analyses have provided a new insight into PDAC biology and have led to the description of multiple molecular subtypes, with a significant prognostic value for most of them, but that have not yet been transposed to routine clinical practice, mainly due to poor availability of tumor tissue material prior to surgical resection. In this review, we provide an overview of the current status of clinico-pathological and molecular biomarkers (tumor and blood) to predict early recurrence, and their implications for clinical practice and future research development.
Collapse
|
9
|
Reviewing the Utility of EUS FNA to Advance Precision Medicine in Pancreatic Cancer. Cancers (Basel) 2018; 10:cancers10020035. [PMID: 29382047 PMCID: PMC5836067 DOI: 10.3390/cancers10020035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
Advanced pancreatic cancer (PC) is an aggressive malignancy with few effective therapeutic options. While the evolution of precision medicine in recent decades has changed the treatment landscape in many cancers, at present no targeted therapies are used in the routine management of PC. Only a minority of patients with PC present with surgically resectable disease, and in the remainder obtaining high quality biopsy material for both diagnosis and molecular testing can prove challenging. Endoscopic ultrasound-guided fine needle aspiration (EUS FNA) is a widely used diagnostic procedure in PC, and allows tumour sampling in patients with both early and late stage disease. This review will provide an update on the role of EUS FNA as a diagnostic tool, as well as a source of genetic material which can be used both for molecular analysis and for the creation of valuable preclinical disease models. We will also consider relevant clinical applications of EUS FNA in the management of PC, and the path towards bringing precision medicine closer to the clinic in this challenging disease.
Collapse
|
10
|
Ruess DA, Görgülü K, Wörmann SM, Algül H. Pharmacotherapeutic Management of Pancreatic Ductal Adenocarcinoma: Current and Emerging Concepts. Drugs Aging 2017; 34:331-357. [PMID: 28349415 DOI: 10.1007/s40266-017-0453-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma is a devastating malignancy, which is the result of late diagnosis, aggressive disease, and a lack of effective treatment options. Thus, pancreatic ductal adenocarcinoma is projected to become the second leading cause of cancer-related death by 2030. This review summarizes recent developments of oncological therapy in the palliative setting of metastatic pancreatic ductal adenocarcinoma. It further compiles novel targets and therapeutic approaches as well as promising treatment combinations, which are presently in preclinical evaluation, covering several aspects of the hallmarks of cancer. Finally, challenges to the implementation of an individualized therapy approach in the context of precision medicine are discussed.
Collapse
Affiliation(s)
- Dietrich A Ruess
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Kivanc Görgülü
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sonja M Wörmann
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Hana Algül
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
11
|
Kim JH, Kim HS, Kim BJ, Lee J, Jang HJ. Prognostic value of c-Met overexpression in pancreatic adenocarcinoma: a meta-analysis. Oncotarget 2017; 8:73098-73104. [PMID: 29069852 PMCID: PMC5641195 DOI: 10.18632/oncotarget.20392] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/07/2017] [Indexed: 12/13/2022] Open
Abstract
The overexpression of c-Met protein has been detected in pancreatic adenocarcinoma (PAC). However, its prognostic impact remains unclear. We performed this meta-analysis to evaluate the prognostic value of c-Met overexpression in PAC. A systematic computerized search of the electronic databases such as PubMed, Embase, and Google Scholar was carried out. From 5 studies, 423 patients who underwent surgical resection for PAC were included in the meta-analysis. Compared with patients with PAC showing low c-Met expression, patients with c-Met-high tumor had significantly worse disease-free survival (hazard ratio = 1.94 [95% confidence interval, 1.46–2.56], P = 0.00001) and overall survival (hazard ratio = 1.86 [95% confidence interval, 1.19–2.91], P = 0.006). In conclusion, this meta-analysis demonstrates that c-Met overexpression is a significant prognostic marker for poor survival in patients who underwent surgical resection for PAC.
Collapse
Affiliation(s)
- Jung Han Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Hyeong Su Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Bum Jun Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea.,Department of Internal Medicine, National Army Capital Hospital, The Armed Forces Medical Command, Sungnam 13574, Republic of Korea
| | - Jin Lee
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Hwasung 18450, Republic of Korea
| | - Hyun Joo Jang
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Hwasung 18450, Republic of Korea
| |
Collapse
|
12
|
Chen AH, Qin YE, Tang WF, Tao J, Song HM, Zuo M. MiR-34a and miR-206 act as novel prognostic and therapy biomarkers in cervical cancer. Cancer Cell Int 2017; 17:63. [PMID: 28615991 PMCID: PMC5466768 DOI: 10.1186/s12935-017-0431-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/29/2017] [Indexed: 12/13/2022] Open
Abstract
Background Recent evidence indicated that the aberrant expression of microRNA plays a crucial role in the development of cervical cancer. The overall shorter survival was strongly related to the abnormal expression of microRNA-34a (miR-34a) and microRNA-206 (miR-206), which target B cell lymphoma-2(Bcl2) and c-Met. Hepatocyte growth factor (HGF)/c-Met pathway is related to the occurrence, development and prognosis of cervical cancer, and c-Met is significantly overexpressed in cervical squamous cell carcinoma. Bcl2 is also considered to be a promising target for developing novel anticancer treatments. Methods In this study, we detect the expression of miR-34a and miR-206 in the cervical cancer tissue through quantificational real-time polymerase chain reaction (qRT-PCR) assay, and the expression of Bcl2 and c-Met from cervical cancer tissue were detected by immunohistochemistry. Results The expression of miR-34a and miR-206 were down-regulated in the cervical cancer tissue through qRT-PCR assay. As target genes of miR-34a and miR-206, Bcl2 and c-Met were up-regulated in cervical cancer tissues through qRT-PCR assay and immunohistochemistry. Kaplan–Meier and log-rank analysis revealed that down-regulated expression of miR-34a and miR-206 were strongly related to shorter overall survival. Multivariate Cox proportional hazards model for all variables that were statistically significant in the univariate analysis demonstrated that miR-34a (P = 0.038) and miR-206 (P = 0.008) might be independent prognostic factors for overall survival of patients suffering from cervical cancer. Conclusions The up-regulation of Bcl2 and c-Met promotes the cervical cancer’s progress, and the expression of miR-34a and miR-206 significantly correlated with the progression and prognosis in cervical cancer. All of these suggested that miR-34a and miR-206 might be the novel prognostic and therapy tools in cervical cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0431-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ai-Hua Chen
- Department of Gynecology and Obstetrics, The People's Hospital of China, China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000 China
| | - Yu-E Qin
- Department of Gynecology and Obstetrics, The People's Hospital of China, China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000 China
| | - Wen-Fan Tang
- Department of Gynecology and Obstetrics, The People's Hospital of China, China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000 China
| | - Jing Tao
- Department of Gynecology and Obstetrics, The People's Hospital of China, China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000 China
| | - Hua-Mei Song
- Department of Gynecology and Obstetrics, The People's Hospital of China, China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000 China
| | - Manzhen Zuo
- Department of Gynecology and Obstetrics, The People's Hospital of China, China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000 China
| |
Collapse
|
13
|
Li W, Hu M, Wang C, Lu H, Chen F, Xu J, Shang Y, Wang F, Qin J, Yan Q, Krueger BJ, Renne R, Gao SJ, Lu C. A viral microRNA downregulates metastasis suppressor CD82 and induces cell invasion and angiogenesis by activating the c-Met signaling. Oncogene 2017; 36:5407-5420. [PMID: 28534512 PMCID: PMC5608636 DOI: 10.1038/onc.2017.139] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 02/06/2023]
Abstract
Kaposi’s sarcoma (KS) is the most common AIDS-associated malignancy etiologically caused by Kaposi’s sarcoma-associated herpesvirus (KSHV). KS is a highly disseminated and vascularized tumor comprised of poorly differentiated spindle-shaped endothelial cells. KSHV encodes 12 pre-microRNAs (pre-miRNAs) that yield 25 mature miRNAs, but their roles in KSHV-induced tumor dissemination and angiogenesis remain largely unknown. KSHV-encoded miR-K12-6 (miR-K6) can produce two mature miRNAs, miR-K6-3p and miR-K6-5p. Recently, we have shown that miR-K6-3p promoted cell migration and angiogenesis by directly targeting SH3 domain binding glutamate-rich protein (SH3BGR) (PLoS Pathog. 2016;12(4):e1005605). Here, by using mass spectrometry, bioinformatics analysis and luciferase reporter assay, we showed that miR-K6-5p directly targeted the coding sequence (CDS) of CD82 molecule (CD82), a metastasis suppressor. Ectopic expression of miR-K6-5p specifically inhibited the expression of endogenous CD82 and strongly promoted endothelial cells invasion in vitro and angiogenesis in vivo. Overexpression of CD82 significantly inhibited cell invasion and angiogenesis induced by miR-K6-5p. Mechanistically, CD82 directly interacted with c-Met to inhibit its activation. MiR-K6-5p directly repressed CD82, relieving its inhibition on c-Met activation and inducing cell invasion and angiogenesis. Deletion of miR-K6 from KSHV genome abrogated KSHV suppression of CD82 resulting in compromised KSHV activation of c-Met pathway, and KSHV-induced invasion and angiogenesis. In conclusion, these results show that by inhibiting CD82, KSHV miR-K6-5p promotes cell invasion and angiogenesis by activating the c-Met pathway. Our findings illustrate that KSHV miRNAs may play an essential role in the dissemination and angiogenesis of KSHV-induced malignancies.
Collapse
Affiliation(s)
- W Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - M Hu
- Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - C Wang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - H Lu
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - F Chen
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - J Xu
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - Y Shang
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - F Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - J Qin
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - Q Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - B J Krueger
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - R Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - S-J Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - C Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Microbiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Lim KH, Langley E, Gao F, Luo J, Li L, Meyer G, Kim P, Singh S, Kushnir VM, Early DS, Mullady DK, Edmundowicz SA, Wani S, Murad FM, Cao D, Azar RR, Wang-Gillam A. A clinically feasible multiplex proteomic immunoassay as a novel functional diagnostic for pancreatic ductal adenocarcinoma. Oncotarget 2017; 8:24250-24261. [PMID: 28445954 PMCID: PMC5421844 DOI: 10.18632/oncotarget.15653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 02/16/2017] [Indexed: 02/07/2023] Open
Abstract
To date, targeted therapy for pancreatic ductal adenocarcinoma (PDAC) remains largely unsuccessful in the clinic. Current genomics-based technologies are unable to reflect the quantitative, dynamic signaling changes in the tumor, and require larger tumor samples that are difficult to obtain in PDAC patients. Therefore, a highly sensitive functional tool that can reliably and comprehensively inform intra-tumoral signaling events is direly needed to guide treatment decision. We tested the utility of a highly sensitive proteomics-based functional diagnostic platform, Collaborative Enzyme Enhanced Reactive-immunoassay (CEERTM), on fine-needle aspiration (FNA) samples obtained from 102 patients with radiographically-evident pancreatic tumors. Two FNA passes were collected from each patient, hybridized to customized chips coated with an array of capture antibodies, and detected using two enzyme-conjugated antibodies which emit quantifiable signals. We demonstrate that this technique is highly sensitive in detecting total and phosphorylated forms of multiple signaling molecules in FNA specimens, with reasonable correlation of marker intensities between two different FNA passes. Notably, signals of several markers were significantly higher in PDAC compared to non-cancerous samples. In PDAC samples, we found high total c-Met signal to be associated with poor survival, and confirmed this finding using an independent PDAC tissue microarray.
Collapse
Affiliation(s)
- Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Emma Langley
- Prometheus Laboratories Inc., San Diego, CA, USA
| | - Feng Gao
- Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingqin Luo
- Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Lin Li
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gary Meyer
- Prometheus Laboratories Inc., San Diego, CA, USA
| | - Phillip Kim
- Prometheus Laboratories Inc., San Diego, CA, USA
| | - Sharat Singh
- Prometheus Laboratories Inc., San Diego, CA, USA
| | - Vladamir M. Kushnir
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Dayna S. Early
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel K. Mullady
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven A. Edmundowicz
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sachin Wani
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Dengfeng Cao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Riad R. Azar
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea Wang-Gillam
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
15
|
de Geus SWL, Boogerd LSF, Swijnenburg RJ, Mieog JSD, Tummers WSFJ, Prevoo HAJM, Sier CFM, Morreau H, Bonsing BA, van de Velde CJH, Vahrmeijer AL, Kuppen PJK. Selecting Tumor-Specific Molecular Targets in Pancreatic Adenocarcinoma: Paving the Way for Image-Guided Pancreatic Surgery. Mol Imaging Biol 2016; 18:807-819. [PMID: 27130234 PMCID: PMC5093212 DOI: 10.1007/s11307-016-0959-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE The purpose of this study was to identify suitable molecular targets for tumor-specific imaging of pancreatic adenocarcinoma. PROCEDURES The expression of eight potential imaging targets was assessed by the target selection criteria (TASC)-score and immunohistochemical analysis in normal pancreatic tissue (n = 9), pancreatic (n = 137), and periampullary (n = 28) adenocarcinoma. RESULTS Integrin αvβ6, carcinoembryonic antigen (CEA), epithelial growth factor receptor (EGFR), and urokinase plasminogen activator receptor (uPAR) showed a significantly higher (all p < 0.001) expression in pancreatic adenocarcinoma compared to normal pancreatic tissue and were confirmed by the TASC score as promising imaging targets. Furthermore, these biomarkers were expressed in respectively 88 %, 71 %, 69 %, and 67 % of the pancreatic adenocarcinoma patients. CONCLUSIONS The results of this study show that integrin αvβ6, CEA, EGFR, and uPAR are suitable targets for tumor-specific imaging of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Susanna W L de Geus
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Leonora S F Boogerd
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Rutger-Jan Swijnenburg
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - J Sven D Mieog
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Willemieke S F J Tummers
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Hendrica A J M Prevoo
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bert A Bonsing
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Cornelis J H van de Velde
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
16
|
Caparello C, Meijer LL, Garajova I, Falcone A, Le Large TY, Funel N, Kazemier G, Peters GJ, Vasile E, Giovannetti E. FOLFIRINOX and translational studies: Towards personalized therapy in pancreatic cancer. World J Gastroenterol 2016; 22:6987-7005. [PMID: 27610011 PMCID: PMC4988311 DOI: 10.3748/wjg.v22.i31.6987] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/09/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is an extremely aggressive disease; although progress has been made in the last few years, the prognosis of these patients remains dismal. FOLFIRINOX is now considered a standard treatment in first-line setting, since it demonstrated an improved overall and progression-free survival vs gemcitabine alone. However, the enthusiasm over the benefit of this three-drug regimen is tempered by the associated increased toxicity profile, and many efforts have been made to improve the feasibility of this schedule. After a more recent phase III trial showing an improved outcome over gemcitabine, the combination of gemcitabine/nab-paclitaxel emerged as another standard first-line treatment. However, this treatment is also associated with more side effects. In addition, despite initial promising data on the predictive role of SPARC levels, recent studies showed that these levels are not associated with nab-paclitaxel efficacy. The choice to use this treatment over FOLFIRINOX is therefore a topic of debate, also because no validated biomarkers to guide FOLFIRINOX treatment are available. In the era of actionable mutations and target agents it would be desirable to identify molecular factors or biomarkers to predict response to therapy in order to maximize the efficacy of treatment and avoid useless toxic effects for non-responding patients. However, until today the milestone of treatment for pancreatic cancer remains chemotherapy combinations, without predictive or monitoring tools existing to optimize therapy. This review analyzes the state-of-the-art treatments, promises and limitations of targeted therapies, ongoing trials and future perspectives, including potential role of microRNAs as predictive biomarkers.
Collapse
|
17
|
Dawkins JBN, Wang J, Maniati E, Heward JA, Koniali L, Kocher HM, Martin SA, Chelala C, Balkwill FR, Fitzgibbon J, Grose RP. Reduced Expression of Histone Methyltransferases KMT2C and KMT2D Correlates with Improved Outcome in Pancreatic Ductal Adenocarcinoma. Cancer Res 2016; 76:4861-71. [PMID: 27280393 PMCID: PMC5321534 DOI: 10.1158/0008-5472.can-16-0481] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/30/2016] [Indexed: 12/21/2022]
Abstract
Genes encoding the histone H3 lysine 4 methyltransferases KMT2C and KMT2D are subject to deletion and mutation in pancreatic ductal adenocarcinoma (PDAC), where these lesions identify a group of patients with a more favorable prognosis. In this study, we demonstrate that low KMT2C and KMT2D expression in biopsies also defines better outcome groups, with median survivals of 15.9 versus 9.2 months (P = 0.029) and 19.9 versus 11.8 months (P = 0.001), respectively. Experiments with eight human pancreatic cell lines showed attenuated cell proliferation when these methyltransferases were depleted, suggesting that this improved outcome may reflect a cell-cycle block with diminished progression from G0-G1 RNA-seq analysis of PDAC cell lines following KMT2C or KMT2D knockdown identified 31 and 124 differentially expressed genes, respectively, with 19 genes in common. Gene-set enrichment analysis revealed significant downregulation of genes related to cell-cycle and growth. These data were corroborated independently by examining KMT2C/D signatures extracted from the International Cancer Genome Consortium and The Cancer Genome Atlas datasets. Furthermore, these experiments highlighted a potential role for NCAPD3, a condensin II complex subunit, as an outcome predictor in PDAC using existing gene expression series. Kmt2d depletion in KC/KPC cell lines also led to an increased response to the nucleoside analogue 5-fluorouracil, suggesting that lower levels of this methyltransferase may mediate the sensitivity of PDAC to particular treatments. Therefore, it may also be therapeutically beneficial to target these methyltransferases in PDAC, especially in those patients demonstrating higher KTM2C/D expression. Cancer Res; 76(16); 4861-71. ©2016 AACR.
Collapse
Affiliation(s)
- Joshua B N Dawkins
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jun Wang
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Eleni Maniati
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - James A Heward
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Lola Koniali
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Hemant M Kocher
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Sarah A Martin
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Claude Chelala
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Frances R Balkwill
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jude Fitzgibbon
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Richard P Grose
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
18
|
Diagnosis and Prognostic Significance of c-Met in Cervical Cancer: A Meta-Analysis. DISEASE MARKERS 2016; 2016:6594016. [PMID: 27069297 PMCID: PMC4812361 DOI: 10.1155/2016/6594016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 01/13/2023]
Abstract
Objective. A meta-analysis was conducted to analyze c-Met expression in cervical cancer. Methods. Articles related to our study were retrieved from PubMed, Elsevier, and China National Knowledge Infrastructure. State 12.0 was used for literature review, data extraction, and meta-analysis. The random-effects model and fixed-effects model were utilized to pool the relative ratio based on the heterogeneity test in the meta-analysis. Results. Nine studies that include data of 685 cervical carcinoma tissues were analyzed. However, three studies did not thoroughly discuss c-Met expression in nonneoplastic cervical tissue; thus, only six studies involving 364 patients and 228 nonneoplastic cervical tissues were included in the review. c-Met expression was higher in cervical cancer (60.99%) than in nonneoplastic cervical tissue (19.74%). Cervical carcinoma, cervical intraepithelial neoplasm, and normal cervical tissue were also examined. Results showed that increasing malignancy resulted in elevated c-Met expression. The relationship between c-Met expression and clinicopathologic features was also evaluated. c-Met expression correlated with disease-free survival, lymph node involvement, and lymphovascular space invasion. No statistical difference was observed between c-Met expression and other clinicopathological factors. Conclusions. c-Met is a potential diagnostic and prognostic indicator of cervical cancer.
Collapse
|
19
|
Garajová I, Giovannetti E, Biasco G, Peters GJ. c-Met as a Target for Personalized Therapy. TRANSLATIONAL ONCOGENOMICS 2015. [PMID: 26628860 DOI: 10.4137/togog.s30534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MET and its ligand HGF are involved in many biological processes, both physiological and pathological, making this signaling pathway an attractive therapeutic target in oncology. Downstream signaling effects are transmitted via mitogen-activated protein kinase (MAPK), PI3K (phosphoinositide 3-kinase protein kinase B)/AKT, signal transducer and activator of transcription proteins (STAT), and nuclear factor-κB. The final output of the terminal effector components of these pathways is activation of cytoplasmic and nuclear processes leading to increases in cell proliferation, survival, mobilization and invasive capacity. In addition to its role as an oncogenic driver, increasing evidence implicates MET as a common mechanism of resistance to targeted therapies including EGFR and VEGFR inhibitors. In the present review, we summarize the current knowledge on the role of the HGF-MET signaling pathway in cancer and its therapeutic targeting (HGF activation inhibitors, HGF inhibitors, MET antagonists and selective/nonselective MET kinase inhibitors). Recent advances in understanding the role of this pathway in the resistance to current anticancer strategies used in lung, kidney and pancreatic cancer are discussed.
Collapse
Affiliation(s)
- Ingrid Garajová
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands. ; Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands. ; Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Guido Biasco
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Garajová I, Giovannetti E, Biasco G, Peters GJ. c-Met as a Target for Personalized Therapy. TRANSLATIONAL ONCOGENOMICS 2015; 7:13-31. [PMID: 26628860 PMCID: PMC4659440 DOI: 10.4137/tog.s30534] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/20/2015] [Accepted: 09/23/2015] [Indexed: 12/30/2022]
Abstract
MET and its ligand HGF are involved in many biological processes, both physiological and pathological, making this signaling pathway an attractive therapeutic target in oncology. Downstream signaling effects are transmitted via mitogen-activated protein kinase (MAPK), PI3K (phosphoinositide 3-kinase protein kinase B)/AKT, signal transducer and activator of transcription proteins (STAT), and nuclear factor-κB. The final output of the terminal effector components of these pathways is activation of cytoplasmic and nuclear processes leading to increases in cell proliferation, survival, mobilization and invasive capacity. In addition to its role as an oncogenic driver, increasing evidence implicates MET as a common mechanism of resistance to targeted therapies including EGFR and VEGFR inhibitors. In the present review, we summarize the current knowledge on the role of the HGF-MET signaling pathway in cancer and its therapeutic targeting (HGF activation inhibitors, HGF inhibitors, MET antagonists and selective/nonselective MET kinase inhibitors). Recent advances in understanding the role of this pathway in the resistance to current anticancer strategies used in lung, kidney and pancreatic cancer are discussed.
Collapse
Affiliation(s)
- Ingrid Garajová
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, Sant’Orsola-Malpighi Hospital, Bologna, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Guido Biasco
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, Sant’Orsola-Malpighi Hospital, Bologna, Italy
| | - Godefridus J. Peters
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|