1
|
Barchi A, Dell’Anna G, Massimino L, Mandarino FV, Vespa E, Viale E, Passaretti S, Annese V, Malesci A, Danese S, Ungaro F. Unraveling the pathogenesis of Barrett's esophagus and esophageal adenocarcinoma: the "omics" era. Front Oncol 2025; 14:1458138. [PMID: 39950103 PMCID: PMC11821489 DOI: 10.3389/fonc.2024.1458138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/10/2024] [Indexed: 02/16/2025] Open
Abstract
Barrett's esophagus (BE) represents a pre-cancerous condition that is characterized by the metaplastic conversion of the squamous esophageal epithelium to a columnar intestinal-like phenotype. BE is the consequence of chronic reflux disease and has a potential progression burden to esophageal adenocarcinoma (EAC). The pathogenesis of BE and EAC has been extensively studied but not completely understood, and it is based on two main hypotheses: "transdifferentiation" and "transcommitment". Omics technologies, thanks to the potentiality of managing huge amounts of genetic and epigenetic data, sequencing the whole genome, have revolutionized the understanding of BE carcinogenesis, paving the way for biomarker development helpful in early diagnosis and risk progression assessment. Genomics and transcriptomics studies, implemented with the most advanced bioinformatics technologies, have brought to light many new risk loci and genomic alterations connected to BE and its progression to EAC, further exploring the complex pathogenesis of the disease. Early mutations of the TP53 gene, together with late aberrations of other oncosuppressor genes (SMAD4 or CKND2A), represent a genetic driving force behind BE. Genomic instability, nonetheless, is the central core of the disease. The implementation of transcriptomic and proteomic analysis, even at the single-cell level, has widened the horizons, complementing the genomic alterations with their transcriptional and translational bond. Increasing interest has been gathered around small circulating genetic traces (circulating-free DNA and micro-RNAs) with a potential role as blood biomarkers. Epigenetic alterations (such as hyper or hypo-methylation) play a meaningful role in esophageal carcinogenesis as well as the study of the tumor micro-environment, which has led to the development of novel immunological therapeutic options. Finally, the esophageal microbiome could be the protagonist to be investigated, deepening our understanding of the subtle association between the host microbiota and tumor development.
Collapse
Affiliation(s)
- Alberto Barchi
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giuseppe Dell’Anna
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS Policlinico San Donato, Milan, Italy
| | - Luca Massimino
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Faculty of Medicine, Milan, Italy
| | | | - Edoardo Vespa
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Edi Viale
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Sandro Passaretti
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vito Annese
- Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS Policlinico San Donato, Milan, Italy
- Università Vita-Salute San Raffaele, Faculty of Medicine, Milan, Italy
| | - Alberto Malesci
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS Policlinico San Donato, Milan, Italy
| | - Silvio Danese
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Faculty of Medicine, Milan, Italy
| | - Federica Ungaro
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
2
|
Habu T, Kumagai S, Bando H, Fujisawa T, Mishima S, Kotani D, Nakamura M, Hojo H, Sakashita S, Kinoshita T, Yano T, Mitsunaga S, Nishikawa H, Koyama S, Kojima T. Definitive chemoradiotherapy induces T-cell-inflamed tumor microenvironment in unresectable locally advanced esophageal squamous cell carcinoma. J Gastroenterol 2024; 59:798-811. [PMID: 38819498 DOI: 10.1007/s00535-024-02120-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Chemoradiotherapy (CRT) modulates the tumor immune microenvironment of multiple cancer types, including esophageal cancer, which potentially induces both immunogenicity and immunosuppression by upregulating the presentation of tumor-specific antigens and immune checkpoint molecules in tumors, respectively. The prognostic effects of immune modification by CRT in esophageal squamous cell carcinoma (ESCC) remain controversial because of the lack of detailed immunological analyses using paired clinical specimens before and after CRT. We aimed to clarify the immunological changes in the tumor microenvironment caused by CRT and elucidate the predictive importance of clinical response and prognosis and the rationale for the necessity of subsequent programmed cell death protein 1 (PD-1) inhibitor treatment. METHODS In this study, we performed a comprehensive immunological analysis of paired biopsy specimens using multiplex immunohistochemistry before and after CRT in patients with unresectable locally advanced ESCC. RESULTS CRT significantly increased the intra-tumoral infiltration and PD-1 expression of CD8+ T cells and conventional CD4+ T cells but decreased those of regulatory T cells and the accumulation of tumor-associated macrophages. Multivariate analysis of tumor-infiltrating T-cell phenotypes revealed that the density of PD-1+CD8+ T cells in the tumor after CRT could predict a confirmed complete response and favorable survival. CONCLUSIONS This study showed that CRT improved the immunological characteristics of unresectable locally advanced ESCC and identified the density of PD-1+CD8+ T cells as a predictive factor for prognosis. This finding supports the rationale for the necessity of subsequent PD-1 inhibitor treatment.
Collapse
Affiliation(s)
- Takumi Habu
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Kashiwa, Chiba, Japan
- Department of Gastric Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shogo Kumagai
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Kashiwa, Chiba, Japan
| | - Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Takeshi Fujisawa
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Saori Mishima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Daisuke Kotani
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Masaki Nakamura
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Hidehiro Hojo
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Shingo Sakashita
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Takahiro Kinoshita
- Department of Gastric Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Tomonori Yano
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Shuichi Mitsunaga
- Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Division of Biomarker Discovery, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Kashiwa, Chiba, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shohei Koyama
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Kashiwa, Chiba, Japan.
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.
| |
Collapse
|
3
|
Wang HH, Steffens EN, Kats-Ugurlu G, van Etten B, Burgerhof JGM, Hospers GAP, Plukker JTM. Potential Predictive Immune and Metabolic Biomarkers of Tumor Microenvironment Regarding Pathological and Clinical Response in Esophageal Cancer After Neoadjuvant Chemoradiotherapy: A Systematic Review. Ann Surg Oncol 2024; 31:433-451. [PMID: 37777688 PMCID: PMC10695872 DOI: 10.1245/s10434-023-14352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
INTRODUCTION The tumor microenvironment (TME) plays a crucial role in therapy response and modulation of immunologic surveillance. Adjuvant immunotherapy has recently been introduced in post-surgery treatment of locally advanced esophageal cancer (EC) with residual pathological disease after neoadjuvant chemoradiotherapy (nCRT). F-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) remains a valuable imaging tool to assess therapy response and to visualize metabolic TME; however, there is still a paucity in understanding the interaction between the TME and nCRT response. This systematic review investigated the potential of TME biomarkers and 18F-FDG-PET/CT features to predict pathological and clinical response (CR) after nCRT in EC. METHODS A literature search of the Medline and Embase electronic databases identified 4190 studies. Studies regarding immune and metabolic TME biomarkers and 18F-FDG-PET/CT features were included for predicting pathological response (PR) and/or CR after nCRT. Separate analyses were performed for 18F-FDG-PET/CT markers and these TME biomarkers. RESULTS The final analysis included 21 studies-10 about immune and metabolic markers alone and 11 with additional 18F-FDG-PET/CT features. High CD8 infiltration before and after nCRT, and CD3 and CD4 infiltration after nCRT, generally correlated with better PR. A high expression of tumoral or stromal programmed death-ligand 1 (PD-L1) after nCRT was generally associated with poor PR. Moreover, total lesion glycolysis (TLG) and metabolic tumor volume (MTV) of the primary tumor were potentially predictive for clinical and PR. CONCLUSION CD8, CD4, CD3, and PD-L1 are promising immune markers in predicting PR, whereas TLG and MTV are potential 18F-FDG-PET/CT features to predict clinical and PR after nCRT in EC.
Collapse
Affiliation(s)
- H H Wang
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - E N Steffens
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G Kats-Ugurlu
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - B van Etten
- Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J G M Burgerhof
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G A P Hospers
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J T M Plukker
- Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
4
|
Belle CJ, Lonie JM, Brosda S, Barbour AP. Tumour microenvironment influences response to treatment in oesophageal adenocarcinoma. Front Immunol 2023; 14:1330635. [PMID: 38155973 PMCID: PMC10753779 DOI: 10.3389/fimmu.2023.1330635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
The poor treatment response of oesophageal adenocarcinoma (OAC) leads to low survival rates. Its increasing incidence makes finding more effective treatment a priority. Recent treatment improvements can be attributed to the inclusion of the tumour microenvironment (TME) and immune infiltrates in treatment decisions. OAC TME is largely immunosuppressed and reflects treatment resistance as patients with inflamed TME have better outcomes. Priming the tumour with the appropriate neoadjuvant chemoradiotherapy treatment could lead to higher immune infiltrations and higher expression of immune checkpoints, such as PD-1/PDL-1, CTLA4 or emerging new targets: LAG-3, TIM-3, TIGIT or ICOS. Multiple trials support the addition of immune checkpoint inhibitors to the current standard of care. However, results vary, supporting the need for better response biomarkers based on TME composition. This review explores what is known about OAC TME, the clinical significance of the various cell populations infiltrating it and the emerging therapeutical combination with a focus on immune checkpoints inhibitors.
Collapse
Affiliation(s)
- Clemence J. Belle
- Surgical Oncology Group, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - James M. Lonie
- Surgical Oncology Group, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Sandra Brosda
- Surgical Oncology Group, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew P. Barbour
- Surgical Oncology Group, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
- Department of Surgery, Princess Alexandra Hospital, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Yang YH, Cui DJ, Yang ZL, Yuan WQ, Huang B. Immune function, gastrointestinal hormone levels, and their clinical significance in patients with gastric ulcers complicated with depression. World J Psychiatry 2023; 13:665-674. [PMID: 37771644 PMCID: PMC10523205 DOI: 10.5498/wjp.v13.i9.665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Gastric ulcer (GU) is a common digestive tract disease, and medical records of GU combined with depression are increasingly common. Currently, the risk factors and pathogenesis of GU complicated with depression remain unclear. Low immune function and gastrointestinal hormone levels may also be significant risk factors. Therefore, this study explored the immune function and gastrointestinal hormone levels in patients with GU combined with depression. AIM To explore the immune function, gastrointestinal hormone level, and clinical significance of patients with GU combined with depression. METHODS A retrospective analysis was conducted on 300 patients with GU combined with depression admitted to Guizhou Provincial People's Hospital from January 2021 to June 2022 as the study subjects. According to the Hamilton Depression Scale (HAMD) score, patients were divided into mild-to-moderate (n = 210) and heavy (n = 90) groups. Basic data, immune function indices [immunoglobulin A (IgA), IgM, IgG, serum CD4+ and CD8+ percentage, and CD4+/CD8+ ratio], and gastrointestinal hormone indices [serum gastrin (GAS), cholecystokinin (CCK), and motilin (MTL) levels] were collected. The basic data of the two groups were compared, and the immune function and gastrointestinal hormone indices were analyzed. Multivariate logistic regression was used to analyze the factors influencing the severity of GU complicated with depression. The receiver operating characteristic (ROC) curve and area under the ROC curve (AUC) were used to analyze the value of the immune function index, gastrointestinal hormone index, and combined index in predicting the severity of GU complicated with depression. RESULTS There were no marked differences in sex, age, body mass index, abdominal distension, abdominal pain, belching, nausea, vomiting, or sleep disorders between the heavy and mild-to-moderate groups (P > 0.05). There was a marked difference in the family history of depression between the heavy and mild-to-moderate groups (P < 0.05). There were significant differences in serum IgA and IgM levels and serum CD4+, CD8+, and CD4+/CD8+ ratios between the heavy and mild-to-moderate groups (P < 0.05). Multivariate analysis showed that IgA, IgM, GAS, and CCK serum levels influenced the severity of GU with depression (P < 0.05). The AUC of the ROC curve for serum IgA level predicting GU with depression severity was 0.808 [95% confidence interval (CI): 0.760-0.857], the AUC of the serum IgM level was 0.757 (95%CI: 0.700-0.814), the AUC of the serum GAS level was 0.853 (95%CI: 0.810-0.897), the AUC of the serum CCK level was 0.762 (95%CI: 0.709-0.822), the AUC of immune function (IgA, IgM) and gastrointestinal hormone levels (GAS, CCK) for the prediction of GU with depression severity was 0.958 (95%CI: 0.933-0.976). CONCLUSION Important factors influencing GU complicated with depression are serum IgA, IgM, GAS, and CCK indicators. They can be used as indicators to predict the severity of GU complicated with depression.
Collapse
Affiliation(s)
- Yun-Han Yang
- Department of Gastroenterology, Guizhou Inflammatory Bowel Disease Research Center, National Institution of Drug Clinical Trial, Guizhou Provincial People’s Hospital, Medical College of Guizhou University, Guiyang 550002, Guizhou Province, China
| | - De-Jun Cui
- Department of Gastroenterology, Guizhou Inflammatory Bowel Disease Research Center, National Institution of Drug Clinical Trial, Guizhou Provincial People’s Hospital, Medical College of Guizhou University, Guiyang 550002, Guizhou Province, China
| | - Zai-Li Yang
- Department of Gastroenterology, Guizhou Inflammatory Bowel Disease Research Center, National Institution of Drug Clinical Trial, Guizhou Provincial People’s Hospital, Medical College of Guizhou University, Guiyang 550002, Guizhou Province, China
| | - Wen-Qiang Yuan
- Department of Gastroenterology, Guizhou Inflammatory Bowel Disease Research Center, National Institution of Drug Clinical Trial, Guizhou Provincial People’s Hospital, Medical College of Guizhou University, Guiyang 550002, Guizhou Province, China
| | - Bo Huang
- Department of Gastroenterology, Guizhou Inflammatory Bowel Disease Research Center, National Institution of Drug Clinical Trial, Guizhou Provincial People’s Hospital, Medical College of Guizhou University, Guiyang 550002, Guizhou Province, China
| |
Collapse
|
6
|
Iliadi C, Verset L, Bouchart C, Martinive P, Van Gestel D, Krayem M. The current understanding of the immune landscape relative to radiotherapy across tumor types. Front Immunol 2023; 14:1148692. [PMID: 37006319 PMCID: PMC10060828 DOI: 10.3389/fimmu.2023.1148692] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Radiotherapy is part of the standard of care treatment for a great majority of cancer patients. As a result of radiation, both tumor cells and the environment around them are affected directly by radiation, which mainly primes but also might limit the immune response. Multiple immune factors play a role in cancer progression and response to radiotherapy, including the immune tumor microenvironment and systemic immunity referred to as the immune landscape. A heterogeneous tumor microenvironment and the varying patient characteristics complicate the dynamic relationship between radiotherapy and this immune landscape. In this review, we will present the current overview of the immunological landscape in relation to radiotherapy in order to provide insight and encourage research to further improve cancer treatment. An investigation into the impact of radiation therapy on the immune landscape showed in several cancers a common pattern of immunological responses after radiation. Radiation leads to an upsurge in infiltrating T lymphocytes and the expression of programmed death ligand 1 (PD-L1) which can hint at a benefit for the patient when combined with immunotherapy. In spite of this, lymphopenia in the tumor microenvironment of 'cold' tumors or caused by radiation is considered to be an important obstacle to the patient's survival. In several cancers, a rise in the immunosuppressive populations is seen after radiation, mainly pro-tumoral M2 macrophages and myeloid-derived suppressor cells (MDSCs). As a final point, we will highlight how the radiation parameters themselves can influence the immune system and, therefore, be exploited to the advantage of the patient.
Collapse
Affiliation(s)
- Chrysanthi Iliadi
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Laurine Verset
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Christelle Bouchart
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Philippe Martinive
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Mohammad Krayem
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| |
Collapse
|