Tiwana G, Cock IE, White A, Cheesman MJ. Use of specific combinations of the triphala plant component extracts to potentiate the inhibition of gastrointestinal bacterial growth.
JOURNAL OF ETHNOPHARMACOLOGY 2020;
260:112937. [PMID:
32464314 DOI:
10.1016/j.jep.2020.112937]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE
Triphala is used in Ayurveda to treat a wide variety of diseases, including numerous bacterial infections. Interestingly, the plant components of triphala (Terminalia bellirica, Terminalia chebula and Emblica officinalis) are also good inhibitors of bacterial growth when used individually, yet plant preparations are generally used in combination in traditional medicine. Surprisingly, no previous studies have addressed the reason why the combination is preferred over the individual components to treat bacterial infections.
AIM OF THE STUDY
To test and compare the antibacterial efficacy of triphala and its component parts to quantify their relative efficacies. The individual plant components will also be tested as combinations, thereby determining whether combining the individual components potentiates the antibacterial activity of the components used alone.
MATERIALS AND METHODS
Triphala and the three individual plant components were extracted using solvents of varying polarity (methanol, water, ethyl acetate) and the antibacterial activity of the aqueous resuspensions was quantified by disc diffusion and broth microdilution MIC assays. Combinations of extracts produced from the individual components were also tested against each bacterial species and the ΣFICs was calculated to determine the class of interaction. Where synergy was detected, isobologram analysis was used to determine the optimal component ratios. The Artemia nauplii bioassay was used to test for toxicity and GC-MS headspace profiling analysis was used to highlight terpenoid components that may contribute to the antibacterial activity of triphala.
RESULTS
The aqueous and methanolic triphala, T. bellirica, T. chebula and E. officinalis extracts displayed good inhibitory activity against all bacterial strains, with MICs often in the 250-750 μg/mL range. The methanolic extracts were generally more potent than the aqueous extracts and T. chebula was the most potent of the individual plant components. Combining the extracts of the different plant species resulted in potentiation of the growth inhibitory activity of most combinations compared to that of the individual components. Indeed, with the exception of S. flexneri, all bacterial species were potentiated by at least one combination of methanolic plant extracts, with a substantial proportion of these displaying synergistic interactions. All extracts were found to be either non-toxic, or of low to moderate toxicity in Artemia nauplii assays.
CONCLUSION
Whilst the individual plant components of triphala all inhibit the growth of multiple pathogenic bacteria, the activity is potentiated for multiple combinations. Therefore, the traditional usage of the combination of the three plant materials in triphala not only extends the activity profile of the mixture over that of the individual components, but it also substantially potentiates the inhibitory activity towards multiple bacteria, partially explaining the preference of triphala compared to the individual components.
Collapse