1
|
Kim TH, Heo SY, Chandika P, Kim YM, Kim HW, Kang HW, Je JY, Qian ZJ, Kim N, Jung WK. A literature review of bioactive substances for the treatment of periodontitis: In vitro, in vivo and clinical studies. Heliyon 2024; 10:e24216. [PMID: 38293511 PMCID: PMC10826675 DOI: 10.1016/j.heliyon.2024.e24216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Periodontitis is a common chronic inflammatory disease of the supporting tissues of the tooth that involves a complex interaction of microorganisms and various cell lines around the infected site. To prevent and treat this disease, several options are available, such as scaling, root planning, antibiotic treatment, and dental surgeries, depending on the stage of the disease. However, these treatments can have various side effects, including additional inflammatory responses, chronic wounds, and the need for secondary surgery. Consequently, numerous studies have focused on developing new therapeutic agents for more effective periodontitis treatment. This review explores the latest trends in bioactive substances with therapeutic effects for periodontitis using various search engines. Therefore, this study aimed to suggest effective directions for therapeutic approaches. Additionally, we provide a summary of the current applications and underlying mechanisms of bioactive substances, which can serve as a reference for the development of periodontitis treatments.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, 63349, Republic of Korea
| | - Pathum Chandika
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun-Woo Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Marine Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun Wook Kang
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Jae-Young Je
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Human Bioconvergence, School of Smart Healthcare, Pukyong National University, Busan, 48513, Republic of Korea
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
- Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen, 518108, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Namwon Kim
- Ingram School of Engineering, Texas State University, San Marcos, TX, 78666, USA
- Materials Science, Engineering, and Commercialization (MSEC), Texas State University, San Marcos, TX, 78666, USA
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
2
|
Liang Z, Maher P. Structural Requirements for the Neuroprotective and Anti-Inflammatory Activities of the Flavanone Sterubin. Antioxidants (Basel) 2022; 11:2197. [PMID: 36358569 PMCID: PMC9686938 DOI: 10.3390/antiox11112197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/26/2023] Open
Abstract
Alzheimer's disease (AD) is the most frequent age-associated disease with no treatments that can prevent, delay, slow, or stop its progression. Thus, new approaches to drug development are needed. One promising approach is the use of phenotypic screening assays that can identify compounds that have therapeutic efficacy in target pathways relevant to aging and cognition, as well as AD pathology. Using this approach, we identified the flavanone sterubin, from Yerba santa (Eriodictyon californicum), as a potential drug candidate for the treatment of AD. Sterubin is highly protective against multiple initiators of cell death that activate distinct death pathways, potently induces the antioxidant transcription factor Nrf2, and has strong anti-inflammatory activity. Moreover, in a short-term model of AD, it was able to prevent decreases in short- and long-term memory. In order to better understand which key chemical functional groups are essential to the beneficial effects of sterubin, we compared the activity of sterubin to that of seven closely related flavonoids in our phenotypic screening assays. Surprisingly, only sterubin showed both potent neuroprotective activity against multiple insults as well as strong anti-inflammatory activity against several distinct inducers of inflammation. These effects correlated directly with the ability of sterubin to strongly induce Nrf2 in both nerve and microglial cells. Together, these results define the structural requirements underlying the neuroprotective and anti-inflammatory effects of sterubin and they provide the basis for future studies on new compounds based on sterubin.
Collapse
Affiliation(s)
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, San Diego, CA 92037, USA
| |
Collapse
|
3
|
Fuzhuan Brick Tea Boosts Melanogenesis and Prevents Hair Graying through Reduction of Oxidative Stress via NRF2- HO-1 Signaling. Antioxidants (Basel) 2022; 11:antiox11030599. [PMID: 35326249 PMCID: PMC8945210 DOI: 10.3390/antiox11030599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
The anti-graying effect of the hexane fraction of Fuzhuan brick tea is investigated in Melan-A cells and C57BL/6 mice. As a result, it is found that reactive oxygen species-induced damage is associated with the reduction of melanogenesis in hair bulb melanocytes when reactive oxygen species generation in Melan-A cells occurred. The results revealed that the hexane fraction of Fuzhuan brick tea could remarkably reduce reactive oxygen species generation in Melan-A cells; meanwhile, it could increase the cellular tyrosinase and melanin content, as well as up-regulate the expression of tyrosinase, tyrosinase related protein-1, tyrosinase related protein-2, and microphthalmia-associated transcription factor, and activate the MAP-kinase pathway through activating the phosphorylation of p38 c-Jun N terminal kinase/extracellular signal-regulated kinase. Furthermore, high-pressure liquid chromatography analysis reveals that the tea's major ingredients in hexane fraction include gallic acid, theaflavin, theobromine, caffeine, epicatechin, and quercetin. Together, the current results suggest that Fuzhuan brick tea proves to protect from the damage of hydroquinone, which induces hair pigment loss.
Collapse
|
4
|
Taguchi N, Kitai R, Ando T, Nishimura T, Aoki H, Kunisada T. Protective effect of hydroxygenkwanin against hair graying induced by X-ray irradiation and repetitive plucking. JID INNOVATIONS 2022; 2:100121. [PMID: 35812723 PMCID: PMC9256660 DOI: 10.1016/j.xjidi.2022.100121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 11/26/2022] Open
Abstract
Hair graying in mice is caused by various injuries such as X-ray radiation and repeated plucking that ultimately damage melanocytes and their stem cells (melanocyte stem cells). In X-ray‒induced hair graying, injuries first manifest as a loss-of-niche function of hair follicular keratinocyte stem cells to maintain melanocyte stem cells. Thus, we hypothesized that hair follicular keratinocyte stem cells could be a practical target to prevent hair graying. In this study, we investigated the in vivo effect of the flavonoid hydroxygenkwanin, which has been shown to exert the best protection on human epidermal keratinocytes against in vitro X-ray‒induced cytological effects, using X-ray‒induced and repeated hair plucking‒induced hair graying mice models. We found that hydroxygenkwanin exerted a remarkable effect in preventing hair graying; however, when receptor Y kinase Kit-mutant mice were used, no prevention effect was observed. Therefore, we propose that Kit signaling might be involved in the hydroxygenkwanin-induced protective effect against hair graying.
Collapse
|
5
|
Arbab AH, Zaroug EE, Mudawi MME. Review on Plants with Traditional Uses and Bio-Activity Against Hair Graying. CURRENT TRADITIONAL MEDICINE 2022. [DOI: 10.2174/2215083808666220208105012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Hair graying occurs worldwide, and it has a high impact on the self-esteem of an individual. Hair graying is a melanogenesis disorder that can be attributed to many factors, including age, oxidative stress, psychological stress, and malnutrition. Though there are effective p-phenylenediamine based hair dyes, they often cause allergy and systematic toxicity. Plants are popular a traditional remedy for the management of hair disorders. Due to their high chemical diversity, phytoproducts offer great promises to develop an effective and safe product to manage hair graying and melanogenesis disorders. The aim of the present article is to review plants with traditional uses and bio-activity against hair graying. An extensive literature search was conducted on PubMed, Science Direct, and Google Scholar databases using many combinations of the following keywords: plants used to treat gray hair, natural products, hair graying, melanogenesis, pigmentation, and tyrosinase activity. This review documented about sixty-one plants, including a summary of 47 plants frequently used in traditional medicine, and a brief review of fourteen plants showing promising activity against hair graying. The active constituents and the mechanisms by which active constituents exert anti-hair graying effects were also reviewed.
Collapse
Affiliation(s)
- Ahmed H. Arbab
- Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Elwaleed E. Zaroug
- Department of Phytochemistry and Natural Products, Northern Border University, Kingdom of Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Omdurman Islamic University, Sudan
| | - Mahmoud M. E. Mudawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Northern Border University, Kingdom of Saudi Arabia
- Department of Pharmacology, Faculty of Pharmacy, Omdurman Islamic University, Sudan
| |
Collapse
|
6
|
Taguchi N, Homma T, Aoki H, Kunisada T. Dietary Eriodictyon angustifolium Tea Supports Prevention of Hair Graying by Reducing DNA Damage in CD34+ Hair Follicular Keratinocyte Stem Cells. Biol Pharm Bull 2020; 43:1451-1454. [PMID: 32999155 DOI: 10.1248/bpb.b20-00455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hair follicular keratinocyte stem cells (HFKSC) which provide a functional niche for melanocyte stem cells (MSC) are the primary target of hair graying. However, little research has been done on anti-hair graying medicines targeting HFKSC. We focused on Eriodictyon angustifolium (Ea), which reduces human hair graying when applied topically. To investigate the protective effect of dietary Ea tea (EaT) on hair pigmentation, we used an acute mouse model of hair graying that mimics X-ray-induced DNA damage associated with age-related hair graying. Our results suggest that dietary EaT maintained the niche HFKSC function against X-ray-induced DNA damage and hair graying. These results indicate that dietary EaT may prevent age-related hair graying and serve as an anti-hair graying herbal medicine.
Collapse
Affiliation(s)
- Nobuhiko Taguchi
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine.,General Research & Development Institute, Hoyu Co., Ltd
| | - Takumi Homma
- General Research & Development Institute, Hoyu Co., Ltd
| | - Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine
| |
Collapse
|