1
|
Khan MUA, Aslam MA, Abdullah MFB, Gul H, Stojanović GM, Abdal-Hay A, Hasan A. Microneedle system for tissue engineering and regenerative medicines: a smart and efficient therapeutic approach. Biofabrication 2024; 16:042005. [PMID: 39121888 DOI: 10.1088/1758-5090/ad6d90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The global demand for an enhanced quality of life and extended lifespan has driven significant advancements in tissue engineering and regenerative medicine. These fields utilize a range of interdisciplinary theories and techniques to repair structurally impaired or damaged tissues and organs, as well as restore their normal functions. Nevertheless, the clinical efficacy of medications, materials, and potent cells used at the laboratory level is always constrained by technological limitations. A novel platform known as adaptable microneedles has been developed to address the abovementioned issues. These microneedles offer a solution for the localized distribution of various cargos while minimizing invasiveness. Microneedles provide favorable patient compliance in clinical settings due to their effective administration and ability to provide a painless and convenient process. In this review article, we summarized the most recent development of microneedles, and we started by classifying various microneedle systems, advantages, and fundamental properties. Subsequently, it provides a comprehensive overview of different types of microneedles, the material used to fabricate microneedles, the fundamental properties of ideal microneedles, and their applications in tissue engineering and regenerative medicine, primarily focusing on preserving and restoring impaired tissues and organs. The limitations and perspectives have been discussed by concluding their future therapeutic applications in tissue engineering and regenerative medicines.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Hilal Gul
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Goran M Stojanović
- Department of Electronics, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Abdalla Abdal-Hay
- School of Dentistry, University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
- Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- Faculty of Industry and Energy Technology, Mechatronics Technology Program, New Cairo Technological University, New Cairo-Fifth Settlement, Cairo 11835, Egypt
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
2
|
Vergilio MM, Birchall JC, Lima LL, Rezende RA, Leonardi GR. Drug Delivery Systems based on Microneedles for Dermatological Diseases and Aesthetic Enhancement. Curr Med Chem 2024; 31:3473-3487. [PMID: 37231729 DOI: 10.2174/0929867330666230525122913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 05/27/2023]
Abstract
Microneedle (MN) devices comprise of micron-sized structures that circumvent biological barriers in a minimally invasive manner. MN research continues to grow and evolve; the technology was recently identified as one of the top ten overall emerging technologies of 2020. There is a growing interest in using such devices in cosmetology and dermatological conditions where the MNs mechanically disrupt the outer skin barrier layer, creating transient pathways that allow the passage of materials to underlying skin layers. This review aims to appraise the application of microneedle technologies in skin science, provide information on potential clinical benefits, as well as indicate possible dermatological conditions that can benefit from this technology, including autoimmunemediated inflammatory skin diseases, skin aging, hyperpigmentation, and skin tumors. A literature review was carried out to select studies that evaluated the use of microneedles to enhance drug delivery for dermatologic purposes. MN patches create temporary pathways that allow the passage of therapeutic material to deeper layers of the skin. Given their demonstrable promise in therapeutic applications it will be essential for healthcare professionals to engage with these new delivery systems as they transition to the clinic.
Collapse
Affiliation(s)
- Mariane Massufero Vergilio
- Graduate Program in Internal Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - James Caradoc Birchall
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| | - Lonetá Lauro Lima
- 3D Technologies Research Group, NT3D, Renato Archer Information Technology Center (CTI), Campinas, SP, Brazi
| | - Rodrigo Alvarenga Rezende
- 3D Technologies Research Group, NT3D, Renato Archer Information Technology Center (CTI), Campinas, SP, Brazi
- Postgraduate Program in Biotechnology, Universidade de Araraquara, Araraquara, SP, Brazil
| | - Gislaine Ricci Leonardi
- Graduate Program in Internal Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
3
|
Eş I, Kafadenk A, Gormus MB, Inci F. Xenon Difluoride Dry Etching for the Microfabrication of Solid Microneedles as a Potential Strategy in Transdermal Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206510. [PMID: 36929149 DOI: 10.1002/smll.202206510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Although hypodermic needles are a "gold standard" for transdermal drug delivery (TDD), microneedle (MN)-mediated TDD denotes an unconventional approach in which drug compounds are delivered via micron-size needles. Herein, an isotropic XeF2 dry etching process is explored to fabricate silicon-based solid MNs. A photolithographic process, including mask writing, UV exposure, and dry etching with XeF2 is employed, and the MN fabrication is successfully customized by modifying the CAD designs, photolithographic process, and etching conditions. This study enables fabrication of a very dense MNs (up to 1452 MNs cm-2 ) with height varying between 80 and 300 µm. Geometrical features are also assessed using scanning electron microscopy (SEM) and 3D laser scanning microscope. Roughness of the MNs are improved from 0.71 to 0.35 µm after titanium and chromium coating. Mechanical failure test is conducted using dynamic mechanical analyzer to determine displacement and stress/strain values. The coated MNs are subjected to less displacement (≈15 µm) upon the applied force. COMSOL Multiphysics analysis indicates that MNs are safe to use in real-life applications with no fracture. This technique also enables the production of MNs with distinct shape and dimensions. The optimized process provides a wide range of solid MN types to be utilized for epidermis targeting.
Collapse
Affiliation(s)
- Ismail Eş
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Abdullah Kafadenk
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - M Burak Gormus
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| |
Collapse
|
4
|
3D Printed Hollow Microneedles for Treating Skin Wrinkles Using Different Anti-Wrinkle Agents: A Possible Futuristic Approach. COSMETICS 2023. [DOI: 10.3390/cosmetics10020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Skin wrinkles are an inevitable phenomenon that is brought about by aging due to the degradation of scleroprotein fibers and significant collagen reduction, which is the fundamental basis of anti-wrinkle technology in use today. Conventional treatments such as lasering and Botulinum toxin have some drawbacks including allergic skin reactions, cumbersome treatment procedures, and inefficient penetration of the anti-wrinkle products into the skin due to the high resistance of stratum corneum. Bearing this in mind, the cosmetic industry has exploited the patient-compliant technology of microneedles (MNs) to treat skin wrinkles, developing several products based on solid and dissolvable MNs incorporated with antiwrinkle formulations. However, drug administration via these MNs is limited by the high molecular weight of the drugs. Hollow MNs (HMNs) can deliver a wider array of active agents, but that is a relatively unexplored area in the context of antiwrinkle technology. To address this gap, we discuss the possibility of bioinspired 3D printed HMNs in treating skin wrinkles in this paper. We compare the previous and current anti-wrinkling treatment options, as well as the techniques and challenges involved with its manufacture and commercialization.
Collapse
|
5
|
Hyaluronic Acid Dissolving Microneedles and Nonablative Fractional Laser for Infraorbital Wrinkles: A Prospective, Randomized, Split-Face Study. Dermatol Ther 2023. [DOI: 10.1155/2023/2087120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Background. Recently, hyaluronic acid dissolving microneedles (HA-DMNs) have been widely used in antiwrinkle research studies. However, the comparison of HA-DMNs with nonablative fractional laser (NAFL), which is regarded as the gold standard in the treatment of facial wrinkles, is still lacking. Objective. The purpose was to compare the therapeutic effects and adverse effects of HA-DMNs and NAFL on infraorbital wrinkles. Methods. A prospective, randomized, split-face trial was performed with HA-DMNs on one side and NAFL on the other. The wrinkle numbers, photo-numeric scores, and VISIA assessment scores were compared at baseline and 2, 4, 8, and 12 weeks post-treatment. Reflectance confocal microscopy (RCM) was used to monitor collagen fibers. Adverse effects and subjects’ satisfaction scores were evaluated using scales. Results. The final analysis included 28 patients. The wrinkle numbers and photo-numeric scores decreased on both the HA-DMNs side and the NAFL side in week-2, 4, 8, and 12. The VISIA scores decreased on the HA-DMNs side in week-8 and on the NAFL side in week-2. There were no significant differences in these indexes between the two sides. The RCM images demonstrated a similar increase in collagen density on the two sides. Burning, erythema, edema, and crust scores were higher on the NAFL side than on the HA-DMNs side. There was no significant difference in the subjects’ satisfaction scores of the two sides. Conclusion. HA-DMNs are effective treatment options for infraorbital rejuvenation. From the change of wrinkle numbers and scores, HA-DMNs provided comparable efficacy as NAFL in an observation period of 12 weeks. Meanwhile, HA-DMNs offered a more favorable adverse effect profile than NAFL therapy. Mild but persistent pain, erythema, and edema during the HA-DMNs therapy are noteworthy and require improvement.
Collapse
|
6
|
De Decker I, Logé T, Hoeksema H, Speeckaert MM, Blondeel P, Monstrey S, Claes KEY. Dissolving microneedles for effective and painless intradermal drug delivery in various skin conditions: A systematic review. J Dermatol 2023; 50:422-444. [PMID: 36700529 DOI: 10.1111/1346-8138.16732] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
Intra- and transdermal administration of substances via percutaneous injection is effective but considered painful, and inconvenient in addition to bringing forth biohazardous waste material. In contrast to injection, topical drug application, which includes ointments, creams and lotions, increases the local drug load. Moreover, it has reduced side effects compared to systemic administration. However, the epidermis poses a barrier to high molecular weight substances, limiting the delivery efficiency. Dissolving microneedles (DMN) are hydrophilic, mostly polymer-based constructs that are capable of skin penetration and were developed to provide painless and direct dermal drug delivery. This systematic review provides a comprehensive overview of the available clinical evidence for the use of DMN to treat various skin conditions. According to the PRISMA statement, a systematic search for articles on the use of DMN for dermatological indications was conducted on three different databases (Pubmed, Embase, and the Cochrane library). Only human clinical trials were considered. Qualitative assessment was done by two separate reviewers using the Cochrane risk of bias (RoB 2) and Chambers' criteria assessment tools. The search yielded 1090 articles. After deduplication and removal of ineligible records, 889 records were screened on title and abstract. Full text screening was done for 18 articles and ultimately 17 articles were included of which 15 were randomized controlled trials and two were case series. The quality assessment showed that the majority of included studies had low to no risk of bias. Clinical data supports that DMN are an excellent, effective, and pain free drug delivery method for multiple dermatological disorders including skin aging, hyperpigmentation, psoriasis, warts, and keloids by supplying a painless and effective vehicle for intradermal/intralesional drug administration. Microneedle technology provides a promising non- to minimally-invasive alternative to percutaneous injection.
Collapse
Affiliation(s)
- Ignace De Decker
- Burn Center, Ghent University Hospital, Ghent, Belgium.,Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| | - Thomas Logé
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Henk Hoeksema
- Burn Center, Ghent University Hospital, Ghent, Belgium.,Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| | | | - Phillip Blondeel
- Burn Center, Ghent University Hospital, Ghent, Belgium.,Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| | - Stan Monstrey
- Burn Center, Ghent University Hospital, Ghent, Belgium.,Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| | - Karel E Y Claes
- Burn Center, Ghent University Hospital, Ghent, Belgium.,Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
7
|
Zhang XP, He YT, Li WX, Chen BZ, Zhang CY, Cui Y, Guo XD. An update on biomaterials as microneedle matrixes for biomedical applications. J Mater Chem B 2022; 10:6059-6077. [PMID: 35916308 DOI: 10.1039/d2tb00905f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microneedles (MNs) have been developed for various applications such as drug delivery, cosmetics, diagnosis, and biosensing. To meet the requirements of MNs used in these areas, numerous materials have been used for the fabrication of MNs. However, MNs will be exposed to skin tissues after piercing the stratum corneum barrier. Thus, it is necessary to ensure that the matrix materials of MNs have the characteristics of low toxicity, good biocompatibility, biodegradability, and sufficient mechanical properties for clinical application. In this review, the matrix materials currently used for preparing MNs are summarized and reviewed in terms of these factors. In addition, MN products used on the market and their applications are summarized in the end. This work may provide some basic information to researchers in the selection of MN matrix materials and in developing new materials.
Collapse
Affiliation(s)
- Xiao Peng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 10029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu Ting He
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 10029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wen Xuan Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 10029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 10029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Can Yang Zhang
- Biopharmaceutical and Health Engineering Division, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, East Street Cherry Park, Chaoyang District, Beijing, 100029, P. R. China.
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 10029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
8
|
Huang Y, Yu H, Wang L, Shen D, Ni Z, Ren S, Lu Y, Chen X, Yang J, Hong Y. Research progress on cosmetic microneedle systems: Preparation, property and application. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Advances of Microneedles in Biomedical Applications. Molecules 2021; 26:molecules26195912. [PMID: 34641460 PMCID: PMC8512585 DOI: 10.3390/molecules26195912] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 01/16/2023] Open
Abstract
A microneedle (MN) is a painless and minimally invasive drug delivery device initially developed in 1976. As microneedle technology evolves, microneedles with different shapes (cone and pyramid) and forms (solid, drug-coated, hollow, dissolvable and hydrogel-based microneedles) have been developed. The main objective of this review is the applications of microneedles in biomedical areas. Firstly, the classifications and manufacturing of microneedle are briefly introduced so that we can learn the advantages and fabrications of different MNs. Secondly, research of microneedles in biomedical therapy such as drug delivery systems, diagnoses of disease, as well as wound repair and cancer therapy are overviewed. Finally, the safety and the vision of the future of MNs are discussed.
Collapse
|
10
|
Yadav PR, Munni MN, Campbell L, Mostofa G, Dobson L, Shittu M, Pattanayek SK, Uddin MJ, Das DB. Translation of Polymeric Microneedles for Treatment of Human Diseases: Recent Trends, Progress, and Challenges. Pharmaceutics 2021; 13:1132. [PMID: 34452093 PMCID: PMC8401662 DOI: 10.3390/pharmaceutics13081132] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
The ongoing search for biodegradable and biocompatible microneedles (MNs) that are strong enough to penetrate skin barriers, easy to prepare, and can be translated for clinical use continues. As such, this review paper is focused upon discussing the key points (e.g., choice polymeric MNs) for the translation of MNs from laboratory to clinical practice. The review reveals that polymers are most appropriately used for dissolvable and swellable MNs due to their wide range of tunable properties and that natural polymers are an ideal material choice as they structurally mimic native cellular environments. It has also been concluded that natural and synthetic polymer combinations are useful as polymers usually lack mechanical strength, stability, or other desired properties for the fabrication and insertion of MNs. This review evaluates fabrication methods and materials choice, disease and health conditions, clinical challenges, and the future of MNs in public healthcare services, focusing on literature from the last decade.
Collapse
Affiliation(s)
- Prateek Ranjan Yadav
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
- Chemical Engineering Department, Indian Institute of Technology, Delhi 110016, India;
| | | | - Lauryn Campbell
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | - Golam Mostofa
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (M.N.M.); (G.M.)
| | - Lewis Dobson
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | - Morayo Shittu
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | | | - Md. Jasim Uddin
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (M.N.M.); (G.M.)
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Diganta Bhusan Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| |
Collapse
|
11
|
Zhang L, Guo R, Wang S, Yang X, Ling G, Zhang P. Fabrication, evaluation and applications of dissolving microneedles. Int J Pharm 2021; 604:120749. [PMID: 34051319 DOI: 10.1016/j.ijpharm.2021.120749] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/25/2023]
Abstract
In recent years, transdermal preparations have emerged as one of the most promising modes of administration. In particular, dissolving microneedles have attracted extensive attention because of their painlessness, safety, high delivery efficiency and easily operation for patients. This article mainly reviews the preparation methods, the types of matrix polymer materials, the content of dissolving microneedles performance testing, and the applications of dissolving microneedles. It is expected to lay a solid knowledge foundation for the in-depth study of the dissolving microneedles.
Collapse
Affiliation(s)
- Lijing Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Ranran Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Siqi Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaotong Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|