1
|
Maghraby Y, Ibrahim AH, El-Shabasy RM, Azzazy HMES. Overview of Nanocosmetics with Emphasis on those Incorporating Natural Extracts. ACS OMEGA 2024; 9:36001-36022. [PMID: 39220491 PMCID: PMC11360025 DOI: 10.1021/acsomega.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
The cosmetic industry is rapidly rising worldwide. To overcome certain deficiencies of conventional cosmetics, nanomaterials have been introduced to formulations of nails, lips, hair, and skin for treating/alleviating hyperpigmentation, hair loss, acne, dandruff, wrinkles, photoaging, etc. Innovative nanocarrier materials applied in the cosmetic sector for carrying the active ingredients include niosomes, fullerenes, liposomes, carbon nanotubes, and nanoemulsions. These exhibit several advantages, such as elevated stability, augmented skin penetration, specific site targeting, and sustained release of active contents. Nevertheless, continuous exposure to nanomaterials in cosmetics may pose some health hazards. This review features the different new nanocarriers applied for delivering cosmetics, their positive impacts and shortcomings, currently marketed nanocosmetic formulations, and their possible toxic effects. The role of natural ingredients, including vegetable oils, seed oils, essential oils, fats, and plant extracts, in the formulation of nanocosmetics is also reviewed. This review also discusses the current trend of green cosmetics and cosmetic regulations in selected countries.
Collapse
Affiliation(s)
- Yasmin
R. Maghraby
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Ahmed H. Ibrahim
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Center
for Materials Science, Zewail City of Science
and Technology, Sixth
of October,12578 Giza, Egypt
| | - Rehan M. El-Shabasy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Chemistry
Department, Faculty of Science, Menoufia
University, 32512 Shebin El-Kom, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Department
of Nanobiophotonics, Leibniz Institute of
Photonic Technology, Jena 07745, Germany
| |
Collapse
|
2
|
Castro NR, Pinto CDSC, Dos Santos EP, Mansur CRE. Nanosystems with potential application as carriers for skin depigmenting actives. NANOTECHNOLOGY 2024; 35:402001. [PMID: 38901412 DOI: 10.1088/1361-6528/ad5a15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024]
Abstract
Hyperpigmentation is a skin disorder characterized by excessive production of melanin in the skin and includes dyschromias such as post-inflammatory hyperchromias, lentigens, melasma and chloasma. Topical products containing depigmenting agents offer a less aggressive treatment option for hyperpigmentation compared to methods like chemical peels and laser sessions. However, some of these agents can cause side effects such as redness and skin irritation. Encapsulating these actives in nanosystems shows promise in mitigating these effects and improving product safety and efficacy. In addition, nanocarriers have the ability to penetrate the skin, potentially allowing for targeted delivery of actives to the affected areas. The most commonly investigated nanosystems are nanoemulsions, vesicular nanosystems and nanoparticles, in which different materials can be used to generate different compositions in order to improve the properties of these nanocarriers. Nanocarriers have already been widely explored, but it is necessary to understand the evolution of these technologies when applied to the treatment of skin hyperchromias. Therefore, this literature review aims to present the state of the art over the last 15 years on the use of nanosystems as a potential strategy for encapsulating depigmenting actives for potential application in cosmetic products for skin hyperchromia. By providing a comprehensive overview of the latest research findings and technological advances, this article can contribute to improving the care and quality of life of people affected by this skin condition.
Collapse
Affiliation(s)
- Natalia Ruben Castro
- Federal University of Rio de Janeiro, Institute of Macromolecules, Center of Technology, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Cristal Dos Santos C Pinto
- Federal University of Rio de Janeiro, Institute of Macromolecules, Center of Technology, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Elisabete P Dos Santos
- Federal University of Rio de Janeiro, Faculty of Pharmacy, Department of Drugs and Medicines, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Claudia Regina E Mansur
- Federal University of Rio de Janeiro, Institute of Macromolecules, Center of Technology, Ilha do Fundão, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Oargă (Porumb) DP, Cornea-Cipcigan M, Cordea MI. Unveiling the mechanisms for the development of rosehip-based dermatological products: an updated review. Front Pharmacol 2024; 15:1390419. [PMID: 38666029 PMCID: PMC11043540 DOI: 10.3389/fphar.2024.1390419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Rosa spp., commonly known as rosehips, are wild plants that have traditionally been employed as herbal remedies for the treatment of a wide range of disorders. Rosehip is a storehouse of vitamins, including A, B complex, C, and E. Among phytonutrients, vitamin C is found in the highest amount. As rosehips contain significant levels of vitamin C, they are perfect candidates for the development of skincare formulations that can be effectively used in the treatment of different skin disorders (i.e., scarring, anti-aging, hyperpigmentation, wrinkles, melasma, and atopic dermatitis). This research focuses on the vitamin C content of several Rosa sp. by their botanical and geographic origins, which according to research studies are in the following order: R. rugosa > R. montana > R. canina > R. dumalis, with lower levels in R. villosa and R. arvensis, respectively. Among rosehip species, R. canina is the most extensively studied species which also displays significant amounts of bioactive compounds, but also antioxidant, and antimicrobial activities (e.g., against Propionibacterium acnes, Staphylococcus aureus, S, epidermis, and S. haemolyticus). The investigation also highlights the use of rosehip extracts and oils to minimise the harmful effects of acne, which primarily affects teenagers in terms of their physical appearance (e.g., scarring, hyperpigmentation, imperfections), as well as their moral character (e.g., low self-confidence, bullying). Additionally, for higher vitamin C content from various rosehip species, the traditional (i.e., infusion, maceration, Soxhlet extraction) and contemporary extraction methods (i.e., supercritical fluid extraction, microwave-assisted, ultrasonic-assisted, and enzyme-assisted extractions) are highlighted, finally choosing the best extraction method for increased bioactive compounds, with emphasis on vitamin C content. Consequently, the current research focuses on assessing the potential of rosehip extracts as medicinal agents against various skin conditions, and the use of rosehip concentrations in skincare formulations (such as toner, serum, lotion, and sunscreen). Up-to-date studies have revealed that rosehip extracts are perfect candidates as topical application products in the form of nanoemulsions. Extensive in vivo studies have revealed that rosehip extracts also exhibit specific activities against multiple skin disorders (i.e., wound healing, collagen synthesis, atopic dermatitis, melasma, and anti-aging effects). Overall, with multiple dermatological actions and efficacies, rosehip extracts and oils are promising agents that require a thorough investigation of their functioning processes to enable their safe use in the skincare industry.
Collapse
Affiliation(s)
| | - Mihaiela Cornea-Cipcigan
- Laboratory of Cell Analysis and Plant Breeding, Department of Horticulture, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Mirela Irina Cordea
- Laboratory of Cell Analysis and Plant Breeding, Department of Horticulture, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Saharawat S, Verma S. A Comprehensive Review on Niosomes as a Strategy in Targeted Drug Delivery: Pharmaceutical, and Herbal Cosmetic Applications. Curr Drug Deliv 2024; 21:1460-1473. [PMID: 38231066 DOI: 10.2174/0115672018269199231121055548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 01/18/2024]
Abstract
Niosomes are newly developed, self-assembling sac-like transporters that deliver medication at a specific site in a focused manner, increasing availability in the body and prolonging healing effects. Niosome discovery has increased drugs' therapeutic effectiveness while also reducing adverse effects. This article aims to concentrate on the increase in the worldwide utilization of niosomal formulation. This overview presents a thorough perspective of niosomal investigation up until now, encompassing categories and production techniques, their significance in pharmaceutical transportation, and cosmetic use. The thorough literature review revealed that extensive attention has been given to developing nanocarriers for drug delivery as they hold immense endeavor to attain targeted delivery to the affected area simultaneously shielding the adjacent healthy tissue. Many reviews and research papers have been published that demonstrate the interest of scientists in niosomes. Phytoconstituents, which possess antioxidant, antibiotic, anti-inflammatory, wound healing, anti-acne, and skin whitening properties, are also encapsulated into niosome. Their flexibility allows for the incorporation of various therapeutic agents, including small molecules, proteins, and peptides making them adaptable for different types of drugs. Niosomes can be modified with ligands, enhancing their targeting capabilities. A flexible drug delivery mechanism provided by non-ionic vesicles, which are self-assembling vesicular nano-carriers created from hydrating non-ionic surfactant, cholesterol, or amphiphilic compounds along comprehensive applications such as transdermal and brain-targeted delivery.
Collapse
Affiliation(s)
- Sakshi Saharawat
- Noida Institute of Engineering and Technology (Pharmacy Institute) Greater Noida, Uttar Pradesh 201306, India
| | - Sushma Verma
- Noida Institute of Engineering and Technology (Pharmacy Institute) Greater Noida, Uttar Pradesh 201306, India
| |
Collapse
|
5
|
Ngoc LTN, Moon JY, Lee YC. Antioxidants for improved skin appearance: Intracellular mechanism, challenges and future strategies. Int J Cosmet Sci 2023; 45:299-314. [PMID: 36794452 DOI: 10.1111/ics.12848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/21/2022] [Accepted: 02/05/2023] [Indexed: 02/17/2023]
Abstract
Recent advances in molecular and biochemical processes relevant to the skincare field have led to the development of novel ingredients based on antioxidants that can improve skin health and youthfulness. Considering the plethora of such antioxidants and the many implications for the skin's appearance, this review focuses on describing the critical aspects of antioxidants, including cosmetic functions, intracellular mechanisms and challenges. In particular, specialized substances are suggested for the treatment of each skin condition, such as skin ageing, skin dehydration and skin hyperpigmentation, which treatments can maximize effectiveness and avoid side effects during skin care processes. In addition, this review proposes advanced strategies that either already exists in the cosmetic market or should be developed to improve and optimize cosmetic' beneficial effects.
Collapse
Affiliation(s)
- Le Thi Nhu Ngoc
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam-si, Korea
| | - Ju-Young Moon
- Department of Beauty Design Management, Han-sung University, Seoul, Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, Seongnam-si, Korea
| |
Collapse
|
6
|
De Decker I, Notebaert M, Speeckaert MM, Claes KEY, Blondeel P, Van Aken E, Van Dorpe J, De Somer F, Heintz M, Monstrey S, Delanghe JR. Enzymatic Deglycation of Damaged Skin by Means of Combined Treatment of Fructosamine-3-Kinase and Fructosyl-Amino Acid Oxidase. Int J Mol Sci 2023; 24:ijms24108981. [PMID: 37240327 DOI: 10.3390/ijms24108981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The consensus in aging is that inflammation, cellular senescence, free radicals, and epigenetics are contributing factors. Skin glycation through advanced glycation end products (AGEs) has a crucial role in aging. Additionally, it has been suggested that their presence in scars leads to elasticity loss. This manuscript reports fructosamine-3-kinase (FN3K) and fructosyl-amino acid oxidase (FAOD) in counteracting skin glycation by AGEs. Skin specimens were obtained (n = 19) and incubated with glycolaldehyde (GA) for AGE induction. FN3K and FAOD were used as monotherapy or combination therapy. Negative and positive controls were treated with phosphate-buffered saline and aminoguanidine, respectively. Autofluorescence (AF) was used to measure deglycation. An excised hypertrophic scar tissue (HTS) (n = 1) was treated. Changes in chemical bonds and elasticity were evaluated using mid-infrared spectroscopy (MIR) and skin elongation, respectively. Specimens treated with FN3K and FAOD in monotherapy achieved an average decrease of 31% and 33% in AF values, respectively. When treatments were combined, a decrease of 43% was achieved. The positive control decreased by 28%, whilst the negative control showed no difference. Elongation testing of HTS showed a significant elasticity improvement after FN3K treatment. ATR-IR spectra demonstrated differences in chemical bounds pre- versus post-treatment. FN3K and FAOD can achieve deglycation and the effects are most optimal when combined in one treatment.
Collapse
Affiliation(s)
- Ignace De Decker
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Margo Notebaert
- Department of Diagnostic Sciences, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Karel E Y Claes
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Phillip Blondeel
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Elisabeth Van Aken
- Department of Head and Skin, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Filip De Somer
- Department of Cardiac Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Margaux Heintz
- Faculty of Medicine and Health Sciences, Ghent University, Sint-Pietersnieuwstraat 33, 9000 Ghent, Belgium
| | - Stan Monstrey
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Poomanee W, Yaowiwat N, Pattarachaidaecharuch T, Leelapornpisid P. Optimized multiherbal combination and in vivo anti-skin aging potential: a randomized double blind placebo controlled study. Sci Rep 2023; 13:5633. [PMID: 37024608 PMCID: PMC10079830 DOI: 10.1038/s41598-023-32738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
The present study aimed to optimize a multi-herbal combination exerting the greatest antioxidant property using statistical method for anti-skin aging application as well as to elucidate its in vivo safety and anti-skin aging potential. The multi-herbal combination was optimized using a two-level, full factorial approach by exploring the correlation between the concentrations (0-3%w/v) of three extracts from Centella asiatica (CA), Momordica cochinchinensis (MA), Phyllanthus emblica (EM). An anti-skin aging emulsion containing the optimized combination was then developed and evaluated for its physicochemical characteristics with its stability under storage conditions. The in vivo anti-skin aging potential of the emulsion was subsequently investigated among 60 women in a randomized, double-blind, placebo-controlled study. Skin hydration, elasticity and wrinkles at eye and cheek areas were measured at baseline, after 30 and 60 days of application. Before performance testing, in vivo skin irritation was evaluated using the patch test and homogeneity between groups was also statistically analyzed. According to the model describing the significant main effects of each extract and interaction effects between extracts on percent inhibition against DPPH radicals, the best multi-herbal combination consisted of 3%w/v EM and 3%w/v CA. The developed emulsion containing the combination presented smooth soft texture with good stability in terms of physical characteristics and biological property. Regarding the clinical study, no skin erythema and edema was reported among in all volunteers. After 60 days of application, significantly improved skin hydration, elasticity and wrinkles were observed in the test group. In addition, significantly reduced wrinkles were observed after 60 days in both skin areas of the test group. The anti-skin aging emulsion containing this optimized combination exhibited good safety and performance. Ultimately, this product comprises an effective anti-skin aging formulation for applications.
Collapse
Affiliation(s)
- Worrapan Poomanee
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Nara Yaowiwat
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | | | - Pimporn Leelapornpisid
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
8
|
Clinical Use of Non-Suture Silk-Containing Products: A Systematic Review. Biomimetics (Basel) 2023; 8:biomimetics8010045. [PMID: 36810376 PMCID: PMC9944446 DOI: 10.3390/biomimetics8010045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
AIMS The purpose of this systematic review is to determine how various innovative non-suture silk and silk-containing products are being used in clinical practice, and compare patient outcomes following their use. METHODS A systematic review of PubMed, Web of Science, and Cochrane was completed. A qualitative synthesis of all included studies was then performed. RESULTS Our electronic search identified 868 silk-related publications, which yielded 32 studies for full-text review. After exclusion, nine studies from 2011 to 2018 were included for qualitative analysis. A total of 346 patients were included which consisted of 37 males and 309 females. The mean age range was between 18-79 years old. The follow-up among studies ranged between one to twenty-nine months. Three studies addressed the application of silk in wound dressings, one on the topical application of silk-derived products, one on silk-derived scaffold in breast reconstruction, and three on silk underwear as adjunct for the treatment of gynecological conditions. All studies showed good outcomes alone or in comparison to controls. CONCLUSION This systematic review concludes that silk products' structural, immune, and wound-healing modulating properties are advantageous clinical assets. Nevertheless, more studies are needed to strengthen and establish the benefit of those products.
Collapse
|
9
|
Jaksomsak P, Konseang S, Dell B, Rouached H, Prom-u-thai C. Grain and Leaf Anthocyanin Concentration Varies among Purple Rice Varieties and Growing Condition in Aerated and Flooded Soil. Molecules 2022; 27:molecules27238355. [PMID: 36500461 PMCID: PMC9737845 DOI: 10.3390/molecules27238355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Anthocyanins are a group of pigments responsible for the red-blue color in plant parts, and have potential for health benefits and pharmaceutical ingredients. To evaluate whether anthocyanin concentrations in five purple rice varieties could be varied by water condition, plants were grown in waterlogged and aerobic (well-drained) soil. Grain anthocyanin concentration and grain yield were measured at maturity, while leaf anthocyanin concentrations were measured at booting and flowering stages. Four varieties grown under the waterlogged condition had 2.0−5.5 times higher grain anthocyanin than in the aerobic condition. There was a positive relationship between grain and leaf anthocyanin at booting in the waterlogged condition (r = 0.90, p < 0.05), while grain and leaf anthocyanin were positively correlated at flowering in both the waterlogged (r = 0.88, p < 0.05) and aerobic (r = 0.97, p < 0.01) conditions. The results suggest that water management should be adopted as a practical agronomic tool for improving the anthocyanin concentration of purple rice for specialist markets, but the specific responses between rice varieties to water management should be carefully considered.
Collapse
Affiliation(s)
- Pennapa Jaksomsak
- Program in Agricultural Chemistry, Faculty of Agricultural Production, Maejo University, Chiang Mai 50290, Thailand
| | - Sawika Konseang
- Program in Agricultural Chemistry, Faculty of Agricultural Production, Maejo University, Chiang Mai 50290, Thailand
- Correspondence: (S.K.); (C.P.-u.-t.)
| | - Bernard Dell
- Agricultural and Forestry Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Hatem Rouached
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Chanakan Prom-u-thai
- Agronomy Division, Department of Plant and Soil Sciences, Faculty of Agricultural, Chiang Mai University, Chiang Mai 50200, Thailand
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (S.K.); (C.P.-u.-t.)
| |
Collapse
|
10
|
Vaishampayan P, Rane MM. Herbal nanocosmecuticals: A review on cosmeceutical innovation. J Cosmet Dermatol 2022; 21:5464-5483. [PMID: 35833365 DOI: 10.1111/jocd.15238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cosmeceuticals are drugs, cosmetics, or a combination of both. Cosmeceuticals are personal care products that not only beautify but also need to have healing, therapeutic, and disease-fighting characteristics. For decades, phytocompounds have been employed in cosmeceuticals and have shown potential in applications such as moisturizing, sunscreen, antiaging, and hair-based therapy. The inability of phytocompounds to easily penetrate through the skin and their instability limit their usage in cosmetic products. This can be overcome by incorporating nanotechnology into cosmetic products for a more stable and long-lasting release. Nanotechnology's substantial impact on the cosmetics industry is due to the improved properties attained by particles at the nano scale, such as color, solubility, and transparency. Liposomes, solid lipid nanoparticles, niosomes, and many varieties of nanoparticulate systems are commonly used in cosmetics. Safety concerns for the usage of nanomaterials in cosmeceuticals have been raised lately, hence causing the restriction on the use of nanomaterials by cosmetic companies and enforcing laws demanding thorough safety testing prior to market entry. AIM This review focuses on the types of nanomaterials used in phytocosmetics, along with the potential hazards they pose to human life and the environment, and what legislation has been enacted or can be enacted to address them. METHODS For relevant literature, a literature search was conducted using PubMed, ScienceDirect, and Google Scholar. Nanotechnology, cosmeceuticals, herbal cosmetics, and other related topics were researched and evaluated in articles published between 2016 and 2022. RESULTS Herbal drugs provide a tremendous range of therapeutic benefits. And when nanoparticles were introduced to the personal care industry, the quality of the final product containing phyto-compounds continued to rise. Unfortunately, because these nano components can permeate intact skin barriers and create unwanted consequences, this revolution comes with a slew of health risks. CONCLUSION The cosmeceutical industry's expansion and growth in the application of herbal compounds, as well as the entrance of nanotechnology into the cosmeceuticals business, entail the urgent need for scientific research into their efficacy, safety profile, and use.
Collapse
Affiliation(s)
| | - Meenal M Rane
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
11
|
AJRIN M, ANJUM F. Proniosome: A Promising Approach for Vesicular Drug Delivery. Turk J Pharm Sci 2022; 19:462-475. [PMID: 36047601 PMCID: PMC9438758 DOI: 10.4274/tjps.galenos.2021.53533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/04/2021] [Indexed: 12/01/2022]
Abstract
Different types of drug delivery systems are intended to deliver therapeutic agents to the appropriate site of interest to get desired pharmacological effect. In the field of drug delivery, the advancement of nanotechnology helps develop novel dosage forms such as liposome, noisome, and proniosome. Proniosomes are promising drug carriers, that are dry formulations, and after hydration, are converted to noisome dispersion. Dry proniosomal powder can deliver a unit dose of the drug with improved drug stability and solubility. By using this formulation, both the hydrophilic and lipophilic drugs can be delivered through different routes like oral, topical, transdermal, vaginal, etc. This review revolves on different features of proniosomes such as their structure, formulation materials of proniosomes, preparation methods, evaluation, and application.
Collapse
Affiliation(s)
- Marzina AJRIN
- University of Science and Technology Chittagong, Department of Pharmacy, Chattogram, Bangladesh
| | - Fahmida ANJUM
- University of Science and Technology Chittagong, Department of Pharmacy, Chattogram, Bangladesh
| |
Collapse
|
12
|
Niosomes as cutting edge nanocarrier for controlled and targeted delivery of essential oils and biomolecules. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Saising J, Maneenoon K, Sakulkeo O, Limsuwan S, Götz F, Voravuthikunchai SP. Ethnomedicinal Plants in Herbal Remedies Used for Treatment of Skin Diseases by Traditional Healers in Songkhla Province, Thailand. PLANTS (BASEL, SWITZERLAND) 2022; 11:880. [PMID: 35406860 PMCID: PMC9003147 DOI: 10.3390/plants11070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Skin disorders are a worldwide health problem that normally affect human life. A traditional healer is an important expert in researching notable medicinal plants for skin disease treatment. This study aimed to determine the traditional knowledge and the use of medicinal plants for the treatment of skin diseases among traditional healers in the Songkhla province, Thailand. The ethnobotanical information was collected from experienced traditional healers by semi-structured interviews and participant observations. Plant specimens were also collected and identified using the standard taxonomic method. The data were analyzed by interpretation and descriptive statistics. Twenty-five polyherbal formulations for the treatment of skin diseases were obtained from traditional healers with at least 10 years of experience. A total of 66 plant species in 38 families were documented. Leaves and trees were the most commonly employed plant parts and plant habits included in the herbal remedies, respectively. Fabaceae, Rubiaceae, and Zingiberaceae were the majority of the cited families. Oryza sativa L. and Zingiber montanum (J. Koenig) Link ex A.Dietr. were the most preferred plants combined in the prescriptions, which had the highest use value (UV = 0.83). The highest relative frequency of citation was represented by Curcuma longa L., Eurycoma longifolia Jack, Knema globularia (Lamk.) Warb, and Senna siamea (Lam.) Irwin & Barneby. (0.55 each). This research suggests the importance of traditional healers in the healing of skin diseases with herbal remedies. A variety of medicinal plants are used in the prescriptions for the treatment of skin disorders in the Songkhla province, in the south of Thailand. Pharmacological and toxicological activities as well as phytochemical constituents of polyherbal remedies should be further investigated to scientifically verify further applications of widely practiced herbal medicines.
Collapse
Affiliation(s)
- Jongkon Saising
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand;
- School of Health Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Katesarin Maneenoon
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai 90110, Thailand; (K.M.); (O.S.); (S.L.)
| | - Oraphan Sakulkeo
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai 90110, Thailand; (K.M.); (O.S.); (S.L.)
| | - Surasak Limsuwan
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai 90110, Thailand; (K.M.); (O.S.); (S.L.)
| | - Friedrich Götz
- Microbial Genetics, Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, 72076 Tübingen, Germany;
| | - Supayang Piyawan Voravuthikunchai
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand;
| |
Collapse
|
14
|
Bhat BB, Kamath PP, Chatterjee S, Bhattacherjee R, Nayak UY. Recent Updates on Nanocosmeceutical Skin Care and Anti-Aging Products. Curr Pharm Des 2022; 28:1258-1271. [PMID: 35319358 DOI: 10.2174/1381612828666220321142140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/29/2022] [Indexed: 11/22/2022]
Abstract
Nanotechnology is an innovative area of science that deals with things smaller than 100 nanometers. The influence of nanotechnology in the cosmetic industry is overwhelming since it can enhance the properties attained by the particles at the nano level which includes color, solubility, etc, and also promotes the bioavailability of API. A plethora of nanomaterials can be employed in cosmetics including organic and inorganic nanoparticles. Unlike orthodox carriers, they facilitate easy penetration of the product into the skin and thereby increasing the stability and allowing a controlled drug release so that they can permeate deeper into the skin and start revitalizing it. Nanomaterials rejuvenate the skin by forming an occlusive barrier to inhibit the loss of water from the skin's surface and thereby moisturize the skin. Nano-cosmeceuticals are used to provide better protection against UV radiation, facilitate deeper skin penetration, and give long-lasting effects. Although they still have some safety concerns, hence detailed characterization or risk assessments are required to fulfill the standard safety requirements. In this review, an attempt is made to make a brief overview of various nanocosmeceutical skincare and anti-aging products.
Collapse
Affiliation(s)
- Bhavana B Bhat
- Department of Pharmaceutical Management, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Prateeksha Prakash Kamath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Swarnab Chatterjee
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Rishav Bhattacherjee
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
15
|
Zhang KQ, Lin LL, Xu HJ. Research on Antioxidant Performance of Diglucosyl gallic Acid and Its Application in Emulsion Cosmetics. Int J Cosmet Sci 2022; 44:177-188. [PMID: 35211990 DOI: 10.1111/ics.12766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
The present study investigates the in vitro tyrosinase inhibition activity, antioxidant capacity of diglucosyl gallic acid as well as its clinical efficacy as a cosmetic ingredient. The results show that diglucosyl gallic acid has a stronger ability to inhibit the activity of tyrosinase compared with VC, and its IC50 value is 2.68 mg/mL. Their potential antioxidant activities are further evaluated by the DPPH (α, α-diphenyl-β-picrylhydrazyl) method and the ABTS [2,2´-azinobis-(3-ethylbenzothiazoline-6-sulphonate)] radical cation (ABTS·+ ) method, in which the gallic acid demonstrates a better performance than the traditional antioxidant vitamin C (VC), while the diglucosyl gallic acid shows poorer performance. As to the reducing ability, VC has the best performance, much better than gallic acid and diglucosyl gallic acid. Furthermore, through clinical experiments, it is shown the application of the diglucosyl gallic acid as a cosmetic ingredient can considerably improve the brightness of the skin and meanwhile reduce the area of ultraviolet spots, melanin and erythema over time.
Collapse
Affiliation(s)
- Kai-Qiang Zhang
- School of Chemical & Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Liang-Liang Lin
- School of Chemical & Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hu-Jun Xu
- School of Chemical & Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
16
|
Liu M, Chen S, Zhiwen Z, Li H, Sun G, Yin N, Wen J. Anti-ageing peptides and proteins for topical applications: a review. Pharm Dev Technol 2021; 27:108-125. [PMID: 34957891 DOI: 10.1080/10837450.2021.2023569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skin ageing is a cumulative result of oxidative stress, predominantly caused by reactive oxygen species (ROS). Respiration, pollutants, toxins, or ultraviolet A (UVA) irradiation produce ROS with 80% of skin damage attributed to UVA irradiation. Anti-ageing peptides and proteins are considered valuable compounds for removing ROS to prevent skin ageing and maintenance of skin health. In this review, skin ageing theory has been illustrated with a focus on the mechanism and relationship with anti-ageing peptides and proteins. The effects, classification, and transport pathways of anti-ageing peptides and proteins across skin are summarized and discussed. Over the last decade, several novel formulations and advanced strategies have been developed to overcome the challenges in the dermal delivery of proteins and peptides for skin ageing. This article also provides an in-depth review of the latest advancements in the dermal delivery of anti-ageing proteins and peptides. Based on these studies, this review prospected several semi-solid dosage forms to achieve topical applicability for anti-ageing peptides and proteins.
Collapse
Affiliation(s)
- Mengyang Liu
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Shuo Chen
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Zhang Zhiwen
- Shanghai Institute of Materia Medica, Chinese Academy of Science, China
| | - Hongyu Li
- School of Pharmacy, University of Arkansas for Medical Sciences, Arkansas, USA
| | - Guiju Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, China
| | - Naibo Yin
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Rashwan AK, Karim N, Xu Y, Xie J, Cui H, Mozafari MR, Chen W. Potential micro-/nano-encapsulation systems for improving stability and bioavailability of anthocyanins: An updated review. Crit Rev Food Sci Nutr 2021:1-24. [PMID: 34661483 DOI: 10.1080/10408398.2021.1987858] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Anthocyanins (ACNs) are notable hydrophilic compounds that belong to the flavonoid family, which are available in plants. They have excellent antioxidants, anti-obesity, anti-diabetic, anti-inflammatory, anticancer activity, and so on. Furthermore, ACNs can be used as a natural dye in the food industry (food colorant). On the other hand, the stability of ACNs can be affected by processing and storage conditions, for example, pH, temperature, light, oxygen, enzymes, and so on. These factors further reduce the bioavailability (BA) and biological efficacy of ACNs, as well as limit ACNs application in both food and pharmaceutics field. The stability and BA of ACNs can be improved via loading them in encapsulation systems including nanoemulsions, liposomes, niosomes, biopolymer-based nanoparticles, nanogel, complex coacervates, and tocosomes. Among all systems, biopolymer-based nanoparticles, nanohydrogels, and complex coacervates are comparatively suitable for improving the stability and BA of ACNs. These three systems have excellent functional properties such as high encapsulation efficiency and well-stable against unfavorable conditions. Furthermore, these carrier systems can be used for coating of other encapsulation systems (such as liposome). Additionally, tocosomes are a new system that can be used for encapsulating ACNs. ACNs-loaded encapsulation systems can improve the stability and BA of ACNs. However, further studies regarding stability, BA, and in vivo work of ACNs-loaded micro/nano-encapsulation systems could shed a light to evaluate the therapeutic efficacy including physicochemical stability, target mechanisms, cellular internalization, and release kinetics.
Collapse
Affiliation(s)
- Ahmed K Rashwan
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China.,Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Naymul Karim
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yang Xu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jiahong Xie
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Haoxin Cui
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), 8054 Monash University LPO, Clayton, Victoria, Australia
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Responses of Purple Rice Genotypes to Nitrogen and Zinc Fertilizer Application on Grain Yield, Nitrogen, Zinc, and Anthocyanin Concentration. PLANTS 2021; 10:plants10081717. [PMID: 34451761 PMCID: PMC8400487 DOI: 10.3390/plants10081717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022]
Abstract
Purple rice is recognized as a staple food for humans and as a source of anthocyanins and micronutrients such as zinc (Zn). This study examined how nitrogen (N) and Zn fertilizers affected grain yield and grain N, Zn, and anthocyanin concentration among purple rice genotypes. Six purple rice genotypes (PIZ, KAK, KS, KH-CMU, KDK, and HN) were grown under two levels of N, the optimum N60 (60 kg/ha) and high N180 (180 kg/ha) rates, along with three Zn application methods (no Zn application (Zn0), soil Zn application (ZnS; 50 kg ZnSO4/ha), and foliar Zn spray (ZnF; 0.5% ZnSO4 at the rate of 900 L/ha three times at heading, flowering, and early milk stages). Grain yield of the five purple rice landraces increased by 21–40% when increasing N from N60 to N180, although no response was found with HN. The higher N rate increased grain N concentration by 10–50% among the genotypes, while anthocyanin concentration increased by 100–110% in KAK and KS, and grain Zn was increased in KS. Applying ZnS increased grain yield by 16–94% but decreased anthocyanin and N concentrations compared to the control Zn0. Applying ZnF effectively increased grain Zn concentration by 40–140% in the genotypes without adversely impacting grain anthocyanin or N concentration. This study demonstrated that the appropriate management of N and Zn fertilizers for specific purple rice genotypes would be one way to increase productivity and grain N, Zn, and anthocyanin concentration.
Collapse
|
19
|
Yamuangmorn S, Prom-u-Thai C. The Potential of High-Anthocyanin Purple Rice as a Functional Ingredient in Human Health. Antioxidants (Basel) 2021; 10:833. [PMID: 34073767 PMCID: PMC8225073 DOI: 10.3390/antiox10060833] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Purple rice is recognized as a source of natural anthocyanin compounds among health-conscious consumers who employ rice as their staple food. Anthocyanin is one of the major antioxidant compounds that protect against the reactive oxygen species (ROS) that cause cellular damage in plants and animals, including humans. The physiological role of anthocyanin in plants is not fully understood, but the benefits to human health are apparent against both chronic and non-chronic diseases. This review focuses on anthocyanin synthesis and accumulation in the whole plant of purple rice, from cultivation to the processed end products. The anthocyanin content in purple rice varies due to many factors, including genotype, cultivation, and management as well as post-harvest processing. The cultivation method strongly influences anthocyanin content in rice plants; water conditions, light quantity and quality, and available nutrients in the soil are important factors, while the low stability of anthocyanins means that they can be dramatically degraded under high-temperature conditions. The application of purple rice anthocyanins has been developed in both functional food and other purposes. To maximize the benefits of purple rice to human health, understanding the factors influencing anthocyanin synthesis and accumulation during the entire process from cultivation to product development can be a path for success.
Collapse
Affiliation(s)
| | - Chanakan Prom-u-Thai
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand;
- Agronomy Division, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
20
|
Mirtaleb MS, Shahraky MK, Ekrami E, Mirtaleb A. Advances in biological nano-phospholipid vesicles for transdermal delivery: A review on applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102331] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|