1
|
Wang Y, Zhang Q, Wei Y, Cai X, Li Z, Wu Q, Zhang X, Deng C, Shu P, Xiang Q. Retinol semisolid preparations in cosmetics: transcutaneous permeation mechanism and behaviour. Sci Rep 2024; 14:22793. [PMID: 39354022 PMCID: PMC11445495 DOI: 10.1038/s41598-024-73240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024] Open
Abstract
Retinol is widely used to treat skin ageing because of its effect on cell differentiation, proliferation and apoptosis. However, its potential benefits appear to be limited by its skin permeability. Herein, we investigated the transcutaneous behavior of retinol in semisolid cosmetics, in both in vitro and in vivo experiments. In vitro experiments used the modified Franz diffusion cell combined with Raman spectroscopy. In in vivo experiments, the content of retinol in rat skin and plasma was detected with HPLC. Retinol in semisolid cosmetics was mainly concentrated in the stratum corneum in the skin of the three animal models tested, and in any case did not cross the skin barrier after a 24 h dermatologic topical treatment in Franz diffusion cells tests. Similar results were obtained in live mice and rats, where retinol did not cross the skin barrier and did not enter the blood circulation. Raman spectroscopy was used to test the penetration depth of retinol in skin, which reached 16 μm out of 34 μm in pig skin, whereas the skin of mouse and rat showed too strong bakground interference. To explore epidermal transport mechanism and intradermal residence, skin transcriptomics was performed in rats, which identified 126 genes upregulated related to retinol transport and metabolism, relevant to the search terms "retinoid metabolic process" and "transporter activity". The identity of these upregulated genes suggests that the mechanism of retinol action is linked to epidermis, skin, tissue and epithelium development.
Collapse
Affiliation(s)
- Yuan Wang
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd, Shenzhen, 518000, Guangdong, People's Republic of China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Qirong Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Biopharmaceutical R&D Center of Jinan University, Guangzhou, 510000, China
- Guangzhou Jike Meichuang Co., Ltd, Guangzhou, 510000, China
| | - Yongsheng Wei
- Biopharmaceutical R&D Center of Jinan University, Guangzhou, 510000, China
| | - Xiang Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Biopharmaceutical R&D Center of Jinan University, Guangzhou, 510000, China
| | - Zhiwei Li
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd, Shenzhen, 518000, Guangdong, People's Republic of China
| | - Qingyun Wu
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd, Shenzhen, 518000, Guangdong, People's Republic of China
| | - Xinyi Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Biopharmaceutical R&D Center of Jinan University, Guangzhou, 510000, China
| | - Chaoqing Deng
- Guangzhou Jike Meichuang Co., Ltd, Guangzhou, 510000, China
| | - Peng Shu
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd, Shenzhen, 518000, Guangdong, People's Republic of China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
| | - Qi Xiang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
- Biopharmaceutical R&D Center of Jinan University, Guangzhou, 510000, China.
- Guangzhou Jike Meichuang Co., Ltd, Guangzhou, 510000, China.
| |
Collapse
|
2
|
Krombholz R, Fressle S, Nikolić I, Pantelić I, Savić S, Sakač MC, Lunter D. ex vivo-in vivo comparison of drug penetration analysis by confocal Raman microspectroscopy and tape stripping. Exp Dermatol 2022; 31:1908-1919. [PMID: 36055759 DOI: 10.1111/exd.14672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/08/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
When it comes to skin penetration analysis of a topically applied formulation, the number of suitable methods is limited, and they often lack in spatial resolution. In vivo studies are pivotal, especially in the approval of a new product, but high costs and ethical difficulties are limiting factors. For that reason, good ex vivo models for testing skin penetration are crucial. In this study, caffeine was used as a hydrophilic model drug, applied as a 2% (w/w) hydrogel, to compare different techniques for skin penetration analysis. Confocal Raman microspectroscopy (CRM) and tape stripping with subsequent HPLC analysis were used to quantify caffeine. Experiments were performed ex vivo and in vivo. Furthermore, the effect of 5% (w/w) 1,2-pentanediol on caffeine skin penetration was tested, to compare those methods regarding their effectiveness in detecting differences between both formulations.
Collapse
Affiliation(s)
- Richard Krombholz
- Department of Pharmaceutical Technology, Eberhard Karls University, Tuebingen, Germany
| | - Stefanie Fressle
- Department of Pharmaceutical Technology, Eberhard Karls University, Tuebingen, Germany
| | - Ines Nikolić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade, Belgrade, Serbia
| | - Ivana Pantelić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade, Belgrade, Serbia
| | - Snežana Savić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade, Belgrade, Serbia
| | - Milkica Crevar Sakač
- Department of Pharmaceutical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Dominique Lunter
- Department of Pharmaceutical Technology, Eberhard Karls University, Tuebingen, Germany
| |
Collapse
|
3
|
Iliopoulos F, Goh CF, Haque T, Rahma A, Lane ME. Dermal Delivery of Diclofenac Sodium-In Vitro and In Vivo Studies. Pharmaceutics 2022; 14:2106. [PMID: 36297542 PMCID: PMC9607602 DOI: 10.3390/pharmaceutics14102106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Previously, we reported the use of confocal Raman spectroscopy (CRS) as a novel non-invasive approach to determine drug disposition in the skin in vivo. Results obtained by CRS were found to correlate with data from the well-established in vitro permeation test (IVPT) model using human epidermis. However, these studies used simple vehicles comprising single solvents and binary or ternary solvent mixtures; to date, the utility of CRS for monitoring dermal absorption following application of complex marketed formulations has not been examined. In the present work, skin delivery of diclofenac sodium (DFNa) from two topical dermatological drug products, namely Diclac® Lipogel 10 mg/g and Primofenac® Emulsion gel 1%, was determined by IVPT and in vivo by both CRS and tape stripping (TS) methodologies under similar experimental conditions. The in vivo data were evaluated against the in vitro findings, and a direct comparison between CRS and TS was performed. Results from all methodologies showed that Diclac promoted significantly greater DFNa delivery to the skin (p < 0.05). The cumulative amounts of DFNa which permeated at 24 h in vitro for Diclac (86.5 ± 9.4 µg/cm2) were 3.6-fold greater than the corresponding amounts found for Primofenac (24.4 ± 2.7 µg/cm2). Additionally, total skin uptake of DFNa in vivo, estimated by the area under the depth profiles curves (AUC), or the signal intensity of the drug detected in the upper stratum corneum (SC) (4 µm) ranged from 3.5 to 3.6-fold greater for Diclac than for Primofenac. The shape of the distribution profiles and the depth of DFNa penetration to the SC estimated by CRS and TS were similar for the two methods. However, TS data indicated a 4.7-fold greater efficacy of Diclac relative to Primofenac, with corresponding total amounts of drug penetrated, 94.1 ± 22.6 µg and 20.2 ± 7.0 µg. The findings demonstrate that CRS is a methodology that is capable of distinguishing skin delivery of DFNa from different formulations. The results support the use of this approach for non-invasive evaluation of topical products in vivo. Future studies will examine additional formulations with more complex compositions and will use a wider range of drugs with different physicochemical properties. The non-invasive nature of CRS coupled with the ability to monitor drug permeation in real time offer significant advantages for testing and development of topical dermatological products.
Collapse
Affiliation(s)
- Fotis Iliopoulos
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Tasnuva Haque
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
| | - Annisa Rahma
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
- Pharmaceutics Department, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Majella E. Lane
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
| |
Collapse
|