1
|
Inada RNH, Silva ECA, Lopes CS, Queiroz MB, Torres FFE, da Silva GF, Cerri PS, Guerreiro-Tanomaru JM, Tanomaru-Filho M. Biocompatibility, bioactivity, porosity, and sealer/dentin interface of bioceramic ready-to-use sealers using a dentin-tube model. Sci Rep 2024; 14:16768. [PMID: 39039132 PMCID: PMC11263578 DOI: 10.1038/s41598-024-66616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
This study evaluated the biocompatibility, bioactivity, porosity, and sealer/dentin interface of Sealer Plus BC (SP), Bio-C Sealer (BIOC), TotalFill BC Sealer (TF), and AH Plus (AHP). Dentin tubes filled with the sealers and empty tubes (control group) were implanted in the subcutaneous tissue of rats for different periods (n = 6 per group/period). Number of inflammatory cells (ICs), capsule thickness, von Kossa reaction, interleukin-6 (IL-6) and osteocalcin (OCN) were evaluated. Porosity and voids in the interface dentin/sealers were assessed by micro-computed tomography. The data were submitted to ANOVA/Tukey's tests (α = 0.05). Greater capsule thickness, ICs and IL-6 immunolabeling cells were observed in AHP. No significant difference in thickness of capsule, ICs, and IL-6- immunolabeling cells was detected between SP and TF, in all periods, and after 30 and 60 days between all groups. At 60 days all groups had reduction in capsule thickness, ICs and IL-6 immunolabeling cells. Von Kossa-positive and birefringent structures were observed in the capsules around the sealers. BIOC, SP, and TF exhibited OCN-immunolabeling cells. All sealers had porosity values below 5%, besides low and similar interface voids. BIOC, SP and TF are biocompatible, bioactive, and have low porosity and voids. The dentin-tube model used is an alternative for evaluating bioceramic materials.
Collapse
Affiliation(s)
- Rafaela Nanami Handa Inada
- School of Dentistry, Department of Restorative Dentistry, São Paulo State University (UNESP), Araraquara, 14801‑903, Brazil
| | - Evelin Carine Alves Silva
- School of Dentistry, Department of Restorative Dentistry, São Paulo State University (UNESP), Araraquara, 14801‑903, Brazil
| | - Camila Soares Lopes
- School of Dentistry, Department of Restorative Dentistry, São Paulo State University (UNESP), Araraquara, 14801‑903, Brazil
| | - Marcela Borsatto Queiroz
- School of Dentistry, Department of Restorative Dentistry, São Paulo State University (UNESP), Araraquara, 14801‑903, Brazil
| | | | | | - Paulo Sérgio Cerri
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara, 14801‑903, Brazil
| | | | - Mário Tanomaru-Filho
- School of Dentistry, Department of Restorative Dentistry, São Paulo State University (UNESP), Araraquara, 14801‑903, Brazil.
| |
Collapse
|
2
|
Takagi BAR, Kopper PMP, Zajkowski LA, Pinheiro LS, Scarparo RK. Histological effects of photobiomodulation on delayed tooth replantation: a systematic review. Lasers Med Sci 2024; 39:35. [PMID: 38233594 DOI: 10.1007/s10103-024-03978-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
This systematic review evaluated preclinical studies to assess whether PBM has a more favorable histological response than other treatments used before delayed replantation of avulsed teeth. This review followed the PRISMA checklist and was registered in PROSPERO. MEDLINE (PubMed), Embase, Scopus and Web of Science were searched from their inception to July 14, 2022. Data were independently extracted by two reviewers. Data were collected about species, number of animals, number and type of teeth, groups evaluated, extra-alveolar time, parameters for PBM and other study groups, presence and characteristics of containment, observation time points, evaluation methods, characteristics evaluated, and significant results. The ARRIVE and SYRCLE tools were used to assess the methodological quality and risk of bias (RoB) of the studies. After screening, six studies were included in the review synthesis. Three of the four studies that evaluated root resorption as an outcome found that PBM decreases its occurrence after delayed tooth replantation. A meta-analysis was not conducted because some data were missing in the included studies. Half of the studies evaluating ankylosis found an increase in its occurrence after PBM. Two studies evaluated inflammatory responses and found a reduction of inflammation after PBM. In general, studies had high methodological heterogeneity, intermediate reporting quality and high RoB. Despite the methodological quality and RoB limitations of the studies, the histological responses after delayed tooth replantation were more favourable in the PBM groups. Preclinical studies supported by guidelines should define laser parameters for future clinical studies.
Collapse
Affiliation(s)
- Brenda Ai Refosco Takagi
- Graduate Program, School of Dentistry, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | | | - Luciéli Andréia Zajkowski
- Graduate Program, School of Dentistry, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Lucas Siqueira Pinheiro
- Graduate Program, School of Dentistry, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | | |
Collapse
|
3
|
Balbinot GS, Leitune VCB, Zatta KC, Benin T, Guterres SS, Collares FM. Controlled drug delivery from metronidazole-containing bioactive endodontic cements. Dent Mater 2023; 39:839-845. [PMID: 37500315 DOI: 10.1016/j.dental.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVES This study aims to formulate metronidazole liquid nanocapsules (MTZLNC) and evaluate their effect on the physicochemical and biological properties of calcium silicate-based bioactive endodontic cements, in vitro. METHODS A MTZLNC suspension was formulated by deposition of the preformed polymer and characterized by laser diffraction and high-performance liquid chromatography (HPLC). Calcium silicate (CS) was mixed with a radiopaque agent (calcium tungstate - CaWO4), at 10 wt%, to produce the cement powder. Cements liquids were used with two concentrations of MTZLNC suspension: 0.3 mg/ml and 0.15 mg/ml. Cements prepared with distilled water were used as the control. The radiopacity, setting time, and flow were evaluated following ISO 6876:2012. The compressive strength analysis was conducted according to ISO 9917:2007. pH and mineral deposition were evaluated after immersion in simulated body fluid (SBF). Cell behavior was evaluated by the viability of pre-osteoblastic cells and pulp fibroblasts by SRB and MTT and the antibacterial activity against Enterococcus faecalis was analyzed immediately and after nine months of water storage. RESULTS MTZLNCs were formulated with a median diameter of 148 nm and 83.44 % load efficiency. Increased flow and reduced strength were observed for both MTZLNCs concentrations. The incorporation of MTZLNCs maintained the ability of cements to increase pH media and promote mineral deposition over the samples, without promoting cytotoxicity. A 2 log10 reduction in E. faecalis CFU was observed immediately and after nine months in water storage. CONCLUSION The formulation of MTZLNCs allowed the development of antibacterial calcium silicate-based-cements with suitable physicochemical properties and bioactivity, with a reduction in mechanical strength. The 0.3 mg/ml concentration in cements liquid promoted effective and sustainable antibacterial activity.
Collapse
Affiliation(s)
- Gabriela Souza Balbinot
- Department of Dental Materials, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vicente Castelo Branco Leitune
- Department of Dental Materials, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kelly Cristina Zatta
- Cosmetology and Pharmaceutical Nanotechnology Laboratory, School of Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Tainara Benin
- Pharmaceutical Nanotechnology Laboratory, School of Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Silvia Stanisçauski Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fabricio Mezzomo Collares
- Department of Dental Materials, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Mohamed DAA, Abdelwahab SA, Mahmoud RH, Taha RM. Radiographic and immuno-histochemical evaluation of root perforation repair using MTA with or without platelet-rich fibrin or concentrated growth factors as an internal matrix in dog's teeth: in vivo animal study. Clin Oral Investig 2023; 27:5103-5119. [PMID: 37500933 PMCID: PMC10492699 DOI: 10.1007/s00784-023-05131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVES To comparatively evaluate the in vivo outcome of MTA repair for contaminated and non-contaminated furcation perforations (FP) with or without PRF and CGF as a matrix in dogs' teeth. METHODS Ninety dog teeth were divided into five groups based on the iatrogenic FP repair approach after doing root canal treatment: negative control (without FP), positive control (FP without repair), MTA, MTA + PRF and MTA + CGF groups, where FP were repaired promptly in subdivision 1 (n = 10; non-contaminated) and after 4 weeks of oral contamination in subdivision 2 (n = 10;contaminated). After 3 months, the perforation site was assessed radiographically (vertical bone density), histologically (inflammatory cell count, epithelial proliferation, cementum and bone deposition) and immunohistochemically (OPN and TRAP antibodies localisation). Data collected were statistically analysed using SPSS software at a 0.05 significance level. RESULTS The MTA + PRF and MTA + CGF groups demonstrated significantly more bone formation, OPN immunolocalisation and fewer inflammatory cell counts than MTA group. MTA, MTA + PRF and MTA + CGF groups showed significantly favourable radiographic, histological and immunohistochemical healing features than the positive control, especially in non-contaminated subdivisions, that significantly showed better features than the contaminated subdivisions (P < 0.001). CONCLUSION The use CGF and PRF as a matrix beneath MTA in FP repair in dog's teeth is promising as it could increase hard and soft tissue regeneration in non-contaminated and contaminated perforations. CLINICAL RELEVANCE The repair of FP is challenging especially when associated with contaminated inter-radicular bone loss. Radiographic, histological and immunohistochemical comprehensive evaluation of the root and surrounding attachment apparatus response to different perforation repair protocols could give a predictable clinical outcome.
Collapse
Affiliation(s)
- Dalia Abd-Allah Mohamed
- Endodontic Department, Faculty of Dentistry, Suez Canal University, 4.5 Ring Road, Ismailia, 41522 Egypt
| | - Safinaz AbdelFatah Abdelwahab
- Dental Material Department, Faculty of Dentistry, Suez Canal University, 4.5 Ring Road, Ismailia, 41522 Egypt
- Restorative Department, Faculty of Dentistry, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Rania Hanafi Mahmoud
- Oral Pathology Department, Faculty of Dentistry, Suez Canal University, 4.5 Ring Road, Ismailia, 41522 Egypt
- Oral Pathology Department, Faculty of Dentistry, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Rasha Mohamed Taha
- Oral Biology Department, Faculty of Dentistry, Suez Canal University, 4.5 Ring Road, Ismailia, 41522 Egypt
| |
Collapse
|
5
|
Küçükkaya Eren S. Clinical applications of calcium silicate-based materials: a narrative review. Aust Dent J 2023; 68 Suppl 1:S96-S109. [PMID: 37885314 DOI: 10.1111/adj.12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
Calcium silicate-based materials are hydrophilic materials with biocompatibility and bioactivity properties. Despite many advantages, they might present some problems related to discolouration, setting time, manipulation and solubility depending on the composition of the product and the type of clinical application. Calcium silicate-based materials can be evaluated under two types according to their intended use: calcium silicate-based cements (CSCs) and calcium silicate-based sealers (CSSs). CSCs can be used in many endodontic procedures including perforation repair, resorption repair, apical barriers, guided endodontic repair, vital pulp treatment, endodontic surgery, root fractures and root canal filling as a core obturation material. CSSs are available for use with gutta-percha to obturate root canals using cold and warm techniques, including the sealer-based obturation technique. The purpose of this review is to evaluate the available literature on CSCs and CSSs and to provide up-to-date information and recommendations for their clinical applications.
Collapse
Affiliation(s)
- S Küçükkaya Eren
- Faculty of Dentistry, Department of Endodontics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Dong X, Xu X. Bioceramics in Endodontics: Updates and Future Perspectives. Bioengineering (Basel) 2023; 10:bioengineering10030354. [PMID: 36978746 PMCID: PMC10045528 DOI: 10.3390/bioengineering10030354] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Bioceramics, with excellent bioactivity and biocompatibility, have been widely used in dentistry, particularly in endodontics. Mineral trioxide aggregate (MTA) is the most widely used bioceramic in endodontics. Recently, many new bioceramics have been developed, showing good potential for the treatment of endodontic diseases. This paper reviews the characteristics of bioceramics and their applications in various clinical endodontic situations, including root-end filling, root canal therapy, vital pulp therapy, apexification/regenerative endodontic treatment, perforation repair, and root defect repair. Relevant literature published from 1993 to 2023 was searched by keywords in PubMed and Web of Science. Current evidence supports the predictable outcome of MTA in the treatment of endodontic diseases. Although novel bioceramics such as Biodentine, EndoSequence, and calcium-enriched mixtures have shown promising clinical outcomes, more well-controlled clinical trials are still needed to provide high-level evidence for their application in endodontics. In addition, to better tackle the clinical challenges in endodontics, efforts are needed to improve the bioactivity of bioceramics, particularly to enhance their antimicrobial activity and mechanical properties and reduce their setting time and solubility.
Collapse
Affiliation(s)
- Xu Dong
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: ; Tel.: +86-028-85503494
| |
Collapse
|