1
|
Espíndola-Castro LF, de Oliveira Ribeiro RA, de Souza Costa CA, Rosenblatt A, Galembeck A, de Melo Monteiro GQ. Evaluation of the cytotoxicity of new formulations of cariostatic agents containing nano silver fluoride: an in vitro study. Odontology 2024:10.1007/s10266-024-01001-4. [PMID: 39279012 DOI: 10.1007/s10266-024-01001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024]
Abstract
The objective of the study was to assess the indirect cytotoxicity of 600 ppm and 1500 ppm nano silver fluoride (NSF) compared to other commercial cariostatic agents. 56 dentin discs with 0.4 mm in thickness were obtained from intact human molars and adapted to artificial pulp chambers (APCs). The discs were divided into seven groups according to treatment (n = 8): no treatment (positive control-PC), 29% hydrogen peroxide (negative control-NC), 30% Cariestop (CS30), 38% Riva Star (RS38), 38% Advantage Arrest (AA38), 600 ppm NSF (NSF600), and 1500 ppm NSF (NSF1500). The cariostatic agents were applied on the occlusal surface of the dentin discs (facing upward), and the pulp surface (facing downward) remained in contact with the culture medium. Immediately after the treatments, the extracts (DMEM + cariostatic agent components diffused through the discs) were collected and applied to MDPC-23 cells, which were assessed for viability (CV-alamarBlue, live/dead), adhesion/spreading (F-actin), alkaline phosphatase (ALP) activity, and mineralization nodule (MN) formation. The data were statistically analyzed by ANOVA/Games-Howell (p = 0.05). CV and ALP activity in CS30, RS38, AA38, and NSF600 were similar to PC (p > 0.05). MN formation significantly decreased only in NC, CS30, RS38, and AA38 compared to PC (p < 0.001). Only NSF600 and NSF1500 did not differ from PC (p > 0.05) with mineralization nodules, and this specific cell activity significantly decreased in all other groups (p < 0.05). NSF solutions (600 ppm and 1500 ppm) did not cause transdentinal toxicity on MDPC-23 cells.
Collapse
Affiliation(s)
| | | | | | - Aronita Rosenblatt
- Department of Dentistry, University of Pernambuco (UPE), R. Arnóbio Marques, 310 - Santo Amaro, Recife, PE, Brazil
| | - André Galembeck
- Department of Chemistry, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | | |
Collapse
|
2
|
Rosa V, Silikas N, Yu B, Dubey N, Sriram G, Zinelis S, Lima AF, Bottino MC, Ferreira JN, Schmalz G, Watts DC. Guidance on the assessment of biocompatibility of biomaterials: Fundamentals and testing considerations. Dent Mater 2024:S0109-5641(24)00221-5. [PMID: 39129079 DOI: 10.1016/j.dental.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Assessing the biocompatibility of materials is crucial for ensuring the safety and well-being of patients by preventing undesirable, toxic, immune, or allergic reactions, and ensuring that materials remain functional over time without triggering adverse reactions. To ensure a comprehensive assessment, planning tests that carefully consider the intended application and potential exposure scenarios for selecting relevant assays, cell types, and testing parameters is essential. Moreover, characterizing the composition and properties of biomaterials allows for a more accurate understanding of test outcomes and the identification of factors contributing to cytotoxicity. Precise reporting of methodology and results facilitates research reproducibility and understanding of the findings by the scientific community, regulatory agencies, healthcare providers, and the general public. AIMS This article aims to provide an overview of the key concepts associated with evaluating the biocompatibility of biomaterials while also offering practical guidance on cellular principles, testing methodologies, and biological assays that can support in the planning, execution, and reporting of biocompatibility testing.
Collapse
Affiliation(s)
- Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| | - Nikolaos Silikas
- Dental Biomaterials, Dentistry, The University of Manchester, Manchester, United Kingdom.
| | - Baiqing Yu
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Nileshkumar Dubey
- ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore; Division of Cariology and Operative Dentistry, Department of Comprehensive Dentistry, University of Maryland School of Dentistry, Baltimore, United States.
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| | - Spiros Zinelis
- School of Dentistry National and Kapodistrian University of Athens (NKUA), Greece.
| | - Adriano F Lima
- Dental Research Division, Paulista University, Sao Paulo, Brazil.
| | - Marco C Bottino
- School of Dentistry, University of Michigan, Ann Arbor, USA.
| | - Joao N Ferreira
- Center of Excellence for Innovation for Oral Health and Healthy Longevity, Faculty of Dentistry, Chulalongkorn University, Thailand.
| | - Gottfried Schmalz
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany; Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | - David C Watts
- School of Medical Sciences and Photon Science Institute, University of Manchester, United Kingdom.
| |
Collapse
|
3
|
Shi X, Hu X, Jiang N, Mao J. Regenerative endodontic therapy: From laboratory bench to clinical practice. J Adv Res 2024:S2090-1232(24)00267-4. [PMID: 38969092 DOI: 10.1016/j.jare.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/16/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Maintaining the vitality and functionality of dental pulp is paramount for tooth integrity, longevity, and homeostasis. Aiming to treat irreversible pulpitis and necrosis, there has been a paradigm shift from conventional root canal treatment towards regenerative endodontic therapy. AIM OF REVIEW This extensive and multipart review presents crucial laboratory and practical issues related to pulp-dentin complex regeneration aimed towards advancing clinical translation of regenerative endodontic therapy and enhancing human life quality. KEY SCIENTIFIC CONCEPTS OF REVIEW In this multipart review paper, we first present a panorama of emerging potential tissue engineering strategies for pulp-dentin complex regeneration from cell transplantation and cell homing perspectives, emphasizing the critical regenerative components of stem cells, biomaterials, and conducive microenvironments. Then, this review provides details about current clinically practiced pulp regenerative/reparative approaches, including direct pulp capping and root revascularization, with a specific focus on the remaining hurdles and bright prospects in developing such therapies. Next, special attention was devoted to discussing the innovative biomimetic perspectives opened in establishing functional tissues by employing exosomes and cell aggregates, which will benefit the clinical translation of dental pulp engineering protocols. Finally, we summarize careful consideration that should be given to basic research and clinical applications of regenerative endodontics. In particular, this review article highlights significant challenges associated with residual infection and inflammation and identifies future insightful directions in creating antibacterial and immunomodulatory microenvironments so that clinicians and researchers can comprehensively understand crucial clinical aspects of regenerative endodontic procedures.
Collapse
Affiliation(s)
- Xin Shi
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaohan Hu
- Outpatient Department Office, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Nan Jiang
- Central Laboratory, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
4
|
Fu X, Kim HS. Dentin Mechanobiology: Bridging the Gap between Architecture and Function. Int J Mol Sci 2024; 25:5642. [PMID: 38891829 PMCID: PMC11171917 DOI: 10.3390/ijms25115642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
It is remarkable how teeth maintain their healthy condition under exceptionally high levels of mechanical loading. This suggests the presence of inherent mechanical adaptation mechanisms within their structure to counter constant stress. Dentin, situated between enamel and pulp, plays a crucial role in mechanically supporting tooth function. Its intermediate stiffness and viscoelastic properties, attributed to its mineralized, nanofibrous extracellular matrix, provide flexibility, strength, and rigidity, enabling it to withstand mechanical loading without fracturing. Moreover, dentin's unique architectural features, such as odontoblast processes within dentinal tubules and spatial compartmentalization between odontoblasts in dentin and sensory neurons in pulp, contribute to a distinctive sensory perception of external stimuli while acting as a defensive barrier for the dentin-pulp complex. Since dentin's architecture governs its functions in nociception and repair in response to mechanical stimuli, understanding dentin mechanobiology is crucial for developing treatments for pain management in dentin-associated diseases and dentin-pulp regeneration. This review discusses how dentin's physical features regulate mechano-sensing, focusing on mechano-sensitive ion channels. Additionally, we explore advanced in vitro platforms that mimic dentin's physical features, providing deeper insights into fundamental mechanobiological phenomena and laying the groundwork for effective mechano-therapeutic strategies for dentinal diseases.
Collapse
Affiliation(s)
- Xiangting Fu
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
- Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
- Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
5
|
Sanz-Serrano D, Mercade M, Ventura F, Sánchez-de-Diego C. Engineering a Microphysiological Model for Regenerative Endodontic Studies. BIOLOGY 2024; 13:221. [PMID: 38666833 PMCID: PMC11048264 DOI: 10.3390/biology13040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Dental pulp infections are common buccal diseases. When this happens, endodontic treatments are needed to disinfect and prepare the root canal for subsequent procedures. However, the lack of suitable in vitro models representing the anatomy of an immature root canal hinders research on regenerative events crucial in endodontics, such as regenerative procedures. This study aimed to develop a 3D microphysiological system (MPS) to mimic an immature root canal and assess the cytotoxicity of various irrigating solutions on stem cells. Utilizing the Dental Stem Cells SV40 (DSCS) cell line derived from human apical papilla stem cells, we analyzed the effects of different irrigants, including etidronic acid. The results indicated that irrigating solutions diminished cell viability in 2D cultures and influenced cell adhesion within the microphysiological device. Notably, in our 3D studies in the MPS, 17% EDTA and 9% 1-hydroxyethylidene-1, 1-bisphosphonate (HEBP) irrigating solutions demonstrated superior outcomes in terms of DSCS viability and adherence compared to the control. This study highlights the utility of the developed MPS for translational studies in root canal treatments and suggests comparable efficacy between 9% HEBP and 17% EDTA irrigating solutions, offering potential alternatives for clinical applications.
Collapse
Affiliation(s)
- Diana Sanz-Serrano
- Department of Dentistry, Universitat de Barcelona, 08907 L’Hospitalet de Llobregat, Spain; (D.S.-S.); (M.M.)
- The Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain;
| | - Montse Mercade
- Department of Dentistry, Universitat de Barcelona, 08907 L’Hospitalet de Llobregat, Spain; (D.S.-S.); (M.M.)
- The Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain;
| | - Francesc Ventura
- The Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain;
- Departament de Ciències Fisiològiques, Universitat de Barcelona, The Bellvitge Biomedical Research Institute (IDIBELL), 08907 L’Hospitalet de Llobregat, Spain
| | - Cristina Sánchez-de-Diego
- Department of Biomedical Engineering, University of Wisconsin–Madison, 550 Engineering Dr, Madison, WI 53706, USA
- Department of Pathology & Laboratory Medicine, University of Wisconsin–Madison, 1111 Highland Avenue, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin–Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
6
|
Mishra A, Kai R, Atkuru S, Dai Y, Piccinini F, Preshaw PM, Sriram G. Fluid flow-induced modulation of viability and osteodifferentiation of periodontal ligament stem cell spheroids-on-chip. Biomater Sci 2023; 11:7432-7444. [PMID: 37819086 DOI: 10.1039/d3bm01011b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Developing physiologically relevant in vitro models for studying periodontitis is crucial for understanding its pathogenesis and developing effective therapeutic strategies. In this study, we aimed to integrate the spheroid culture of periodontal ligament stem cells (PDLSCs) within a spheroid-on-chip microfluidic perfusion platform and to investigate the influence of interstitial fluid flow on morphogenesis, cellular viability, and osteogenic differentiation of PDLSC spheroids. PDLSC spheroids were seeded onto the spheroid-on-chip microfluidic device and cultured under static and flow conditions. Computational analysis demonstrated the translation of fluid flow rates of 1.2 μl min-1 (low-flow) and 7.2 μl min-1 (high-flow) to maximum fluid shear stress of 59 μPa and 360 μPa for low and high-flow conditions, respectively. The spheroid-on-chip microfluidic perfusion platform allowed for modulation of flow conditions leading to larger PDLSC spheroids with improved cellular viability under flow compared to static conditions. Modulation of fluid flow enhanced the osteodifferentiation potential of PDLSC spheroids, demonstrated by significantly enhanced alizarin red staining and alkaline phosphatase expression. Additionally, flow conditions, especially high-flow conditions, exhibited extensive calcium staining across both peripheral and central regions of the spheroids, in contrast to the predominantly peripheral staining observed under static conditions. These findings highlight the importance of fluid flow in shaping the morphological and functional properties of PDLSC spheroids. This work paves the way for future investigations exploring the interactions between PDLSC spheroids, microbial pathogens, and biomaterials within a controlled fluidic environment, offering insights for the development of innovative periodontal therapies, tissue engineering strategies, and regenerative approaches.
Collapse
Affiliation(s)
- Apurva Mishra
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Ren Kai
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Srividya Atkuru
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Yichen Dai
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Filippo Piccinini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore.
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore
| |
Collapse
|
7
|
Ostrovidov S, Ramalingam M, Bae H, Orive G, Fujie T, Shi X, Kaji H. Bioprinting and biomaterials for dental alveolar tissue regeneration. Front Bioeng Biotechnol 2023; 11:991821. [PMID: 37122863 PMCID: PMC10140526 DOI: 10.3389/fbioe.2023.991821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Three dimensional (3D) bioprinting is a powerful tool, that was recently applied to tissue engineering. This technique allows the precise deposition of cells encapsulated in supportive bioinks to fabricate complex scaffolds, which are used to repair targeted tissues. Here, we review the recent developments in the application of 3D bioprinting to dental tissue engineering. These tissues, including teeth, periodontal ligament, alveolar bones, and dental pulp, present cell types and mechanical properties with great heterogeneity, which is challenging to reproduce in vitro. After highlighting the different bioprinting methods used in regenerative dentistry, we reviewed the great variety of bioink formulations and their effects on cells, which have been established to support the development of these tissues. We discussed the different advances achieved in the fabrication of each dental tissue to provide an overview of the current state of the methods. We conclude with the remaining challenges and future needs.
Collapse
Affiliation(s)
- Serge Ostrovidov
- Department of Biomechanics, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- School of Basic Medical Science, Chengdu University, Chengdu, China
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Atilim University, Ankara, Türkiye
| | - Hojae Bae
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Hwayang-dong, Seoul, Republic of Korea
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Toshinori Fujie
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Living System Materialogy (LiSM) Reseach Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, Yokohama, Japan
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China
| | - Hirokazu Kaji
- Department of Biomechanics, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- *Correspondence: Hirokazu Kaji,
| |
Collapse
|
8
|
Towards a New Concept of Regenerative Endodontics Based on Mesenchymal Stem Cell-Derived Secretomes Products. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010004. [PMID: 36671576 PMCID: PMC9854964 DOI: 10.3390/bioengineering10010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The teeth, made up of hard and soft tissues, represent complex functioning structures of the oral cavity, which are frequently affected by processes that cause structural damage that can lead to their loss. Currently, replacement therapy such as endodontics or implants, restore structural defects but do not perform any biological function, such as restoring blood and nerve supplies. In the search for alternatives to regenerate the dental pulp, two alternative regenerative endodontic procedures (REP) have been proposed: (I) cell-free REP (based in revascularization and homing induction to remaining dental pulp stem cells (DPSC) and even stem cells from apical papilla (SCAP) and (II) cell-based REP (with exogenous cell transplantation). Regarding the last topic, we show several limitations with these procedures and therefore, we propose a novel regenerative approach in order to revitalize the pulp and thus restore homeostatic functions to the dentin-pulp complex. Due to their multifactorial biological effects, the use of mesenchymal stem cells (MSC)-derived secretome from non-dental sources could be considered as inducers of DPSC and SCAP to completely regenerate the dental pulp. In partial pulp damage, appropriate stimulate DPSC by MSC-derived secretome could contribute to formation and also to restore the vasculature and nerves of the dental pulp.
Collapse
|
9
|
Ribeiro RADO, Peruchi V, Fernandes LDO, Anselmi C, Soares IPM, Hebling J, Costa CADS. The influence of violet LED application time on the esthetic efficacy and cytotoxicity of a 35% H 2O 2 bleaching gel. Photodiagnosis Photodyn Ther 2022; 40:103069. [PMID: 35987461 DOI: 10.1016/j.pdpdt.2022.103069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To assess the potential influence of violet LED (V-LED) application time on the esthetic efficacy and cytotoxicity of a 35% H2O2 bleaching gel. METHODOLOGY Stained and standardized enamel/dentin discs were subjected to one in-office tooth bleaching session (45 min), and the gel was either irradiated or not with V-LED. Thus, the following groups were established (n = 8): G1: No treatment (negative control, NC); G2: 35% H2O2 (positive control, PC); G3: 35%H2O2 + V-LED/15 min; G4: 35%H2O2 + V-LED/30 min; G5: 35%H2O2 + V-LED/45 min. First, esthetic efficacy was assessed (ΔE00 and ΔWI). Discs assembled in artificial pulp chambers were subjected to the same bleaching treatments. Then, the extracts (culture medium + diffused bleaching gel components) were collected and applied to MDPC-23 pulp cells, which were analyzed for viability (Live/Dead, MTT) and oxidative stress (OxS). The amount of H2O2 in the extracts was also determined (leuco crystal-violet/peroxidase). The data were subjected to ANOVA/Tukey at a 5% significance level. RESULTS Although esthetic efficacy did not differ among the irradiated groups (G3, G4, and G5) (p > 0.05), their results were higher than in G2 (PC; p < 0.05). In the irradiated groups, the cell viability and OxS as well as the amount of H2O2 in the extracts were statistically similar to G2 (PC), regardless of irradiation time (p > 0.05). CONCLUSION Although V-LED improves the esthetic outcome of in-office tooth bleaching, increasing irradiation time does not effect the color changes and cytotoxicity of this professional therapy.
Collapse
Affiliation(s)
| | - Victória Peruchi
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Lídia de Oliveira Fernandes
- Department of Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Caroline Anselmi
- Department of Morphology and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Igor Paulino Mendes Soares
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Josimeri Hebling
- Department of Morphology and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Rua Humaitá, 1680, Araraquara, São Paulo 14801-903, Brazil.
| |
Collapse
|
10
|
Soares DG, Rosa V. Regenerating the Dental Pulp-Scaffold Materials and Approaches. Dent Clin North Am 2022; 66:643-657. [PMID: 36216451 DOI: 10.1016/j.cden.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Novel technologies and platforms have allowed significant breakthroughs in dental pulp tissue engineering. The development of injectable scaffolds that can be combined with stem cells, growth factors, or other bioactive compounds has enabled the regeneration of functional dental pulps able to secrete dentin in preclinical and clinical studies. Similarly, cell-homing technologies and scaffold-free strategies aim to modulate dental pulp self-regeneration mediated by resident stem cells and can evade some of the technical challenges related to cell-based tissue engineering strategies. This article will discuss emerging technologies and platforms for the clinical applications of dental pulp tissue engineering.
Collapse
Affiliation(s)
- Diana Gabriela Soares
- Department of Operative Dentistry, Endodontics and Dental Materials, São Paulo University - USP, Bauru School of Dentistry, Dr. Octavio Pinheiro Brizola, 9-75, Bauru, Sao Paulo 17012-901, Brazil.
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, 9 Lower Kent Ridge Road, Level 10, Singapore 119085, Singapore.
| |
Collapse
|
11
|
de Oliveira Ribeiro RA, Zuta UO, Soares IPM, Anselmi C, Soares DG, Briso ALF, Hebling J, de Souza Costa CA. Manganese oxide increases bleaching efficacy and reduces the cytotoxicity of a 10% hydrogen peroxide bleaching gel. Clin Oral Investig 2022; 26:7277-7286. [PMID: 35974255 DOI: 10.1007/s00784-022-04688-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The study aims to assess the effects of a 10% H2O2 bleaching gel with different MnO2 concentrations on the bleaching efficacy (BE), degradation kinetics (DK) of H2O2, and trans-amelodentinal cytotoxicity (TC). MATERIALS AND METHODS Standardized bovine enamel/dentin disks (n = 96) were placed in artificial pulp chambers, and the bleaching gels were applied for 45 min. Thus, the following groups were established: (G1) no treatment (negative control/NC); (G2) 35% H2O2 (positive control/PC); (G3) 10% H2O2; (G4) 10% H2O2 + 2 mg/mL MnO2; (G5) 10% H2O2 + 6 mg/mL MnO2; and (G6) 10% H2O2 + 10 mg/mL MnO2. After analyzing bleaching efficacy (ΔE00 and ΔWI), the degradation kinetics of H2O2 and trans-amelodentinal cytotoxicity were determined (n = 8, ANOVA/Tukey; p < 0.05). RESULTS G6 presented BE (ΔE00 and ΔWI) statistically similar to G2, which represented conventional in-office bleaching (p = 0.6795; p > 0.9999). A significant reduction in the diffusion of H2O2 occurred in G3, G4, G5, and G6 compared to G2 (p < 0.0001). The highest DK of H2O2 occurred in G6 (p < 0.0001), which had the lowest TC in comparison with all other bleached groups (p ≤ 0.0186). CONCLUSION The addition of 10 mg/mL of MnO2 in a 10% H2O2 bleaching gel potentiates the degradation of this reactive molecule, which increases the BE of the product and decreases TC. CLINICAL SIGNIFICANCE Replacing a 35% H2O2 gel commonly used for conventional in-office dental bleaching by a 10% H2O2 gel containing 10 mg/mL of MnO2 reduces the cytotoxicity of this professional therapy, maintaining its excellent esthetic efficacy.
Collapse
Affiliation(s)
| | - Uxua Ortecho Zuta
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Igor Paulino Mendes Soares
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Caroline Anselmi
- Department of Morphology and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Diana Gabriela Soares
- Department of Dentistry, Endodontics and Dental Materials, School of Dentistry, São Paulo University (USP), Bauru, Brazil
| | - André Luiz Fraga Briso
- Department of Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Aracatuba, Brazil
| | - Josimeri Hebling
- Department of Morphology and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil.
| |
Collapse
|
12
|
Hu S, Muniraj G, Mishra A, Hong K, Lum JL, Hong CHL, Rosa V, Sriram G. Characterization of silver diamine fluoride cytotoxicity using microfluidic tooth-on-a-chip and gingival equivalents. Dent Mater 2022; 38:1385-1394. [PMID: 35778310 DOI: 10.1016/j.dental.2022.06.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 01/18/2023]
Abstract
OBJECTIVE This study aims to characterize the cytotoxicity potential of silver diamine fluoride (SDF) on dental pulp stem cells (DPSC) and gingival equivalents. METHODS DPSC cultured on 96-well plates was exposed directly to SDF (0.0001-0.01%) and cell viability (IC50) quantified. Effect of SDF on DPSC viability under flow (with dentin barrier) conditions was evaluated using a custom-designed microfluidic "tooth-on-a-chip". Permeability of dentin discs (0.5-1.5 mm thickness) was evaluated using lucifer yellow permeation assay. Dentin discs were treated with 38% SDF (up to 3 h), and cell viability (live/dead assay) of the DPSC cultured in the inlet (unexposed) and outlet (exposed) regions of the pulp channel was evaluated. To assess the mucosal corrosion potential, gingival equivalents were treated with 38% SDF for 3 or 60 min (OECD test guideline 431) and characterized by MTT assay and histomorphometric analysis. RESULTS DPSC exposed directly to SDF showed a dose-dependent reduction in cell viability (IC50: 0.001%). Inlet channels (internal control) of the tooth-on-a-chip exposed to PBS and SDF-exposed dentin discs showed> 85% DPSC viability. In contrast, the outlet channels of SDF-exposed dentin discs showed a decreased viability of< 31% and 0% (1.5 and ≤1.0 mm thick dentin disc, respectively) (p < 0.01). The gingiva equivalents treated with SDF for 3 and 60 min demonstrated decreased epithelial integrity, loss of intercellular cohesion and corneal layer detachment with significant reduction in intact epithelial thickness (p < 0.05). SIGNIFICANCE SDF penetrated the dentin (≤1 mm thick) inducing significant death of the pulp cells. SDF also disrupted gingival epithelial integrity resulting in mucosal corrosion.
Collapse
Affiliation(s)
- Shijia Hu
- Faculty of Dentistry, National University of Singapore, Singapore.
| | | | - Apurva Mishra
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Kanglun Hong
- National University Centre for Oral Health Singapore, National University Hospital, Singapore
| | - Jing Li Lum
- National University Centre for Oral Health Singapore, National University Hospital, Singapore
| | | | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| |
Collapse
|