1
|
Priya R, Jain V, Akhtar J, Saklani N, Sakhuja P, Agarwal AK, Polisetty RV, Sirdeshmukh R, Kar S, Gautam P. Proteomic profiling of cell line-derived extracellular vesicles to identify candidate circulatory markers for detection of gallbladder cancer. Front Oncol 2022; 12:1027914. [PMID: 36505879 PMCID: PMC9727277 DOI: 10.3389/fonc.2022.1027914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Gallbladder cancer (GBC) is the sixth most common gastrointestinal tract cancer with a very low overall survival and poor prognosis. Profiling of cancer-derived extracellular vesicles (EVs) is an emerging strategy for identification of candidate biomarkers for the detection and prognosis of the disease. The aim of the study was to analyse the protein content from GBC cell line- derived EVs with emphasis on proteins which could be used as candidate biomarkers for the detection of GBC. NOZ and OCUG-1 cell lines were cultured and EVs were isolated from conditioned media. LC-MS/MS analysis of total EV proteins led to the identification of a total of 268 proteins in both the cell lines. Of these, 110 proteins were identified with ≥2 unique peptides with ≥2 PSMs in at least two experimental and technical replicate runs. STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database was used to perform bioinformatics analysis of 110 proteins which showed 'cell adhesion molecule binding', 'integrin binding', 'cadherin binding' among the top molecular functions and 'focal adhesion' to be among the top pathways associated with the EV proteins. A total of 42 proteins including haptoglobin (HP), pyruvate kinase (PKM), annexin A2 (ANXA2), thrombospondin 1 (THBS1), were reported to be differentially abundant in GBC tissue. Of these, 16 proteins were reported to be differentially abundant in plasma and plasma-derived EVs. We infer these proteins to be highly important to be considered as potential circulatory biomarkers for the detection of GBC. To check the validity of this hypothesis, one of the proteins, haptoglobin (HP) as a representative case, was analysed in plasma by quantitative Enzyme- linked immunosorbent assay (ELISA) and we observed its increased levels in GBC in comparison to controls (p value= 0.0063). Receiver operating characteristic (ROC) curve analysis for GBC vs controls showed an Area under the ROC Curve (AUC) of 0.8264 for HP with 22% sensitivity against 100% specificity. We propose that HP along with other candidate proteins may be further explored for their clinical application.
Collapse
Affiliation(s)
- Ratna Priya
- Laboratory of Molecular Oncology, Indian Council of Medical Research (ICMR)- National Institute of Pathology, New Delhi, India,Jamia Hamdard- Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Vaishali Jain
- Laboratory of Molecular Oncology, Indian Council of Medical Research (ICMR)- National Institute of Pathology, New Delhi, India,Department (NIL), Academy of Higher Education (MAHE), Manipal, India
| | - Javed Akhtar
- Laboratory of Molecular Oncology, Indian Council of Medical Research (ICMR)- National Institute of Pathology, New Delhi, India,Jamia Hamdard- Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Neeraj Saklani
- Laboratory of Molecular Oncology, Indian Council of Medical Research (ICMR)- National Institute of Pathology, New Delhi, India
| | - Puja Sakhuja
- Department of Pathology, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Anil Kumar Agarwal
- Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | | | - Ravi Sirdeshmukh
- Department (NIL), Academy of Higher Education (MAHE), Manipal, India,Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Sudeshna Kar
- Jamia Hamdard- Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India,*Correspondence: Poonam Gautam, , ; Sudeshna Kar,
| | - Poonam Gautam
- Laboratory of Molecular Oncology, Indian Council of Medical Research (ICMR)- National Institute of Pathology, New Delhi, India,*Correspondence: Poonam Gautam, , ; Sudeshna Kar,
| |
Collapse
|
2
|
Seo JH, Jeon YJ. Global Proteomic Analysis of Mesenchymal Stem Cells Derived from Human Embryonic Stem Cells via Connective Tissue Growth Factor Treatment under Chemically Defined Feeder-Free Culture Conditions. J Microbiol Biotechnol 2022; 32:126-140. [PMID: 34750284 PMCID: PMC9628825 DOI: 10.4014/jmb.2110.10032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022]
Abstract
Stem cells can be applied usefully in basic research and clinical field due to their differentiation and self-renewal capacity. The aim of this study was to establish an effective novel therapeutic cellular source and create its molecular expression profile map to elucidate the possible therapeutic mechanism and signaling pathway. We successfully obtained a mesenchymal stem cell population from human embryonic stem cells (hESCs) cultured on chemically defined feeder-free conditions and treated with connective tissue growth factor (CTGF) and performed the expressive proteomic approach to elucidate the molecular basis. We further selected 12 differentially expressed proteins in CTGF-induced hESC-derived mesenchymal stem cells (C-hESC-MSCs), which were found to be involved in the metabolic process, immune response, cell signaling, and cell proliferation, as compared to bone marrow derived-MSCs(BM-MSCs). Moreover, these up-regulated proteins were potentially related to the Wnt/β-catenin pathway. These results suggest that C-hESC-MSCs are a highly proliferative cell population, which can interact with the Wnt/β-catenin signaling pathway; thus, due to the upregulated cell survival ability or downregulated apoptosis effects of C-hESC-MSCs, these can be used as an unlimited cellular source in the cell therapy field for a higher therapeutic potential. Overall, the study provided valuable insights into the molecular functioning of hESC derivatives as a valuable cellular source.
Collapse
Affiliation(s)
- Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Young-Joo Jeon
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Corresponding author Phone: +82-42-860-4386 Fax: +82-42-860-4608 E-mail:
| |
Collapse
|
3
|
Kim H, Son S, Ko Y, Shin I. CTGF regulates cell proliferation, migration, and glucose metabolism through activation of FAK signaling in triple-negative breast cancer. Oncogene 2021; 40:2667-2681. [PMID: 33692467 DOI: 10.1038/s41388-021-01731-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 01/31/2023]
Abstract
Connective tissue growth factor (CTGF), also known as CCN2, is a member of the CCN protein family of secreted proteins with roles in diverse biological processes. CTGF regulates biological functions such as cell proliferation, migration, adhesion, wound healing, and angiogenesis. In this study, we demonstrate a mechanistic link between CTGF and enhanced aerobic glycolysis in triple-negative breast cancer (TNBC). We found that CTGF is overexpressed in TNBC and high CTGF expression is correlated with a poor prognosis. Also, CTGF was required for in vivo tumorigenesis and in vitro proliferation, migration, invasion, and adhesion of TNBC cells. Our results indicate that extracellular CTGF binds directly to integrin αvβ3, activating the FAK/Src/NF-κB p65 signaling axis, which results in transcriptional upregulation of Glut3. Neutralization of CTGF decreased cell proliferation, migration, and invasion through downregulation of Glut3-mediated glycolytic phenotypes. Overall, our work suggests a novel function for CTGF as a modulator of cancer metabolism, indicating that CTGF is a potential therapeutic target in TNBC.
Collapse
Affiliation(s)
- Hyungjoo Kim
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seogho Son
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yunhyo Ko
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea. .,Natural Science Institute, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
4
|
Yang S, Jiang W, Yang W, Yang C, Yang X, Chen K, Hu Y, Shen G, Lu L, Cheng F, Zhang F, Rao J, Wang X. Epigenetically modulated miR-1224 suppresses the proliferation of HCC through CREB-mediated activation of YAP signaling pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:944-958. [PMID: 33614242 PMCID: PMC7868928 DOI: 10.1016/j.omtn.2021.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Mounting evidence has demonstrated that microRNA-1224 (miR-1224) is commonly downregulated and serves as a tumor suppressor in multiple malignancies. However, the role and mechanisms responsible for miR-1224 in hepatocellular carcinoma (HCC) remain unclear. In this study, we found that the expression of miR-1224 was downregulated in HCC. Low miR-1224 expression was associated with poor clinicopathologic features and short overall survival. Moreover, the methylation status of putative CpG islands was also found to be an important part in the modulation of miR-1224 expression. miR-1224 could induce HCC cells to arrest in G0/G1 phase and inhibited the proliferation of HCC cells both in vitro and in vivo. Mechanistic investigation showed that by binding with cyclic AMP (cAMP)-response element binding protein (CREB) miR-1224 could repress the transcription and the activation of Yes-associated protein (YAP) signaling pathway. Furthermore, the expression of miR-1224 was inhibited by CREB through EZH2-mediated histone 3 lysine 27 (H3K27me3) on miR-1224 promoter, thus forming a positive feedback circuit. Our findings identify a miR-1224/CREB feedback loop for HCC progression and that blocking this circuit may represent a promising target for HCC treatment.
Collapse
Affiliation(s)
- Shikun Yang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| | - Wei Jiang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China.,Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 210500, China
| | - Wenjie Yang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| | - Chao Yang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| | - Xinchen Yang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| | - Keyan Chen
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| | - Yuanchang Hu
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| | - Gefenqiang Shen
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| | - Ling Lu
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| | - Feng Cheng
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| | - Feng Zhang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| | - Jianhua Rao
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| | - Xuehao Wang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| |
Collapse
|
5
|
Dong Q, Fu L, Zhao Y, Du Y, Li Q, Qiu X, Wang E. Rab11a promotes proliferation and invasion through regulation of YAP in non-small cell lung cancer. Oncotarget 2018; 8:27800-27811. [PMID: 28468127 PMCID: PMC5438609 DOI: 10.18632/oncotarget.15359] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/09/2017] [Indexed: 12/25/2022] Open
Abstract
Rab11a, an evolutionarily conserved Rab GTPases, plays important roles in intracellular transport and has been implicated in cancer progression. However, its role in human non-small cell lung cancer (NSCLC) has not been explored yet. In this study, we discovered that Rab11a protein was upregulated in 57/122 NSCLC tissues. Rab11a overexpression associated with advanced TNM stage, positive nodal status and poor patient prognosis. Rab11a overexpression promoted proliferation, colony formation, invasion and migration with upregulation of cyclin D1, cyclin E, and downregulation of p27 in NSCLC cell lines. Nude mice xenograft demonstrated that Rab11a promoted in vivo cancer growth. Importantly, we found that Rab11a induced YAP protein and inhibited Hippo signaling. Depletion of YAP abolished the effects of Rab11a on cell cycle proteins and cell proliferation. Furthermore, immunoprecipitation showed that Rab11a interacted with YAP in lung cancer cells. In conclusion, the present study suggestes that Rab11a serves as an important oncoprotein and a regulator of YAP in NSCLC.
Collapse
Affiliation(s)
- Qianze Dong
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, China
| | - Lin Fu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yue Zhao
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yaming Du
- Department of Cardiovascular Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Qingchang Li
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
6
|
TNFAIP8 interacts with LATS1 and promotes aggressiveness through regulation of Hippo pathway in hepatocellular carcinoma. Oncotarget 2017; 8:15689-15703. [PMID: 28152516 PMCID: PMC5362516 DOI: 10.18632/oncotarget.14938] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/28/2016] [Indexed: 12/11/2022] Open
Abstract
Although TNFAIP8 overexpression has been implicated in several human cancers, its clinical significance and biological function in hepatocellular carcinoma (HCC) remains unknown. Our study demonstrated that TNFAIP8 overexpression in primary HCC samples correlated with TNM stage, recurrence, poor prognosis and served as an independent favorable prognostic factor. We further showed that TNFAIP8 upregulated cell proliferation, migration, invasion and xenograft tumor growth of HCC cells. In addition, TNFAIP8 overexpression inhibited YAP phosphorylation, increased its nuclear localization and stabilization, leading to upregulation of cyclin proteins, CTGF and cell proliferation. We also found that TNFAIP8 could interact with LATS1 and decreased its phosphorylation. Depletion of LATS1 and YAP by siRNA blocked the biological effects of TNFAIP8. Collectively, the present study provides a novel finding that TNFAIP8 promotes HCC progression through LATS1-YAP signaling pathway. TNFAIP8 may serve as a candidate biomarker for poor prognosis and a target for new therapies.
Collapse
|
7
|
Wu YL, Li HY, Zhao XP, Jiao JY, Tang DX, Yan LJ, Wan Q, Pan CB. Mesenchymal stem cell-derived CCN2 promotes the proliferation, migration and invasion of human tongue squamous cell carcinoma cells. Cancer Sci 2017; 108:897-909. [PMID: 28208216 PMCID: PMC5448615 DOI: 10.1111/cas.13202] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/03/2017] [Accepted: 02/12/2017] [Indexed: 01/08/2023] Open
Abstract
Recent studies have demonstrated that mesenchymal stem cells (MSC) exhibit a tropism to tumors and form the tumor stroma. In addition, we found that MSC can secrete different types of factors. However, the involvement of MSC‐derived factors in human tongue squamous cell carcinoma (TSCC) growth has not been clearly addressed. The CCN family includes multifunctional signaling molecules that affect the initiation and development events of various tumors. In our study, we report that CCN2/connective tissue growth factor (CTGF) was the most highly induced among the CCN family members in MSC that were co‐cultured with TSCC cells. To evaluate the relationship between CCN2 and TSCC growth, we downregulated MSC‐derived CCN2 expression with shRNA targeting CCN2 and found that MSC‐secreted CCN2 promotes TSCC cell proliferation, migration and invasion. We also confirmed that MSC‐derived CCN2 partially accelerated tumor growth in vitro. Taken together, these results suggest that MSC‐derived CCN2 contributes to the promotion of proliferation, migration and invasion of TSCC cells and may be a possible therapy target in the future.
Collapse
Affiliation(s)
- Yu-Ling Wu
- Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Hong-Yu Li
- Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, China.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Peng Zhao
- Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Jiu-Yang Jiao
- Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Dong-Xiao Tang
- Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Ling-Jian Yan
- Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Quan Wan
- Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Chao-Bin Pan
- Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, China
| |
Collapse
|
8
|
Annexin A4-nuclear factor-κB feedback circuit regulates cell malignant behavior and tumor growth in gallbladder cancer. Sci Rep 2016; 6:31056. [PMID: 27491820 PMCID: PMC4974512 DOI: 10.1038/srep31056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 07/13/2016] [Indexed: 02/07/2023] Open
Abstract
Gallbladder cancer (GBC) is the most common malignant tumor of the biliary system. However, the mechanisms underlying its tumor initiation, progression, and metastasis are not yet fully understood. The annexin A4 (ANXA4) gene is highly expressed in GBC tissues and may play an important role in the initiation and progression of this disease. In this study, we examined the up-regulation of ANXA4 in human GBC tissues and cell lines. Elevated ANXA4 correlated well with invasion depth in GBC patients and predicted a poor prognosis. In vitro, GBC-SD and NOZ cells with ANXA4 knockdown demonstrated increased apoptosis and inhibited cell growth, migration, and invasion. Interactions between ANXA4 and nuclear factor-κB (NF-κB) p65 proteins were detected. In vivo, ANXA4 knockdown inhibited tumor growth of GBC cells in nude mice and down-regulated the expression of downstream factors in the NF-κB signaling pathway. Taken together, these data indicate that up-regulation of ANXA4 leads to activation of the NF-κB pathway and its target genes in a feedback regulatory mechanism via the p65 subunit, resulting in tumor growth in GBC.
Collapse
|
9
|
Kuespert S, Junglas B, Braunger BM, Tamm ER, Fuchshofer R. The regulation of connective tissue growth factor expression influences the viability of human trabecular meshwork cells. J Cell Mol Med 2015; 19:1010-20. [PMID: 25704370 PMCID: PMC4420603 DOI: 10.1111/jcmm.12492] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/13/2014] [Indexed: 11/30/2022] Open
Abstract
Connective tissue growth factor (CTGF) induces extracellular matrix (ECM) synthesis and contractility in human trabecular meshwork (HTM) cells. Both processes are involved in the pathogenesis of primary open-angle glaucoma. To date, little is known about regulation and function of CTGF expression in the trabecular meshwork (TM). Therefore, we analysed the effects of different aqueous humour proteins and stressors on CTGF expression in HTM cells. HTM cells from three different donors were treated with endothelin-1, insulin-like growth factor (IGF)-1, angiotensin-II, H2O2 and heat shock and were analysed by immunohistochemistry, real-time RT-PCR and Western blotting. Viability after H2O2 treatment was measured in CTGF silenced HTM-N cells and their controls. Latrunculin A reduced expression of CTGF by about 50% compared to untreated HTM cells, whereas endothelin-1, IGF-1, angiotensin-II, heat shock and oxidative stress led to a significant increase. Silencing of CTGF resulted in a delayed expression of αB-crystallin and in reduced cell viability in comparison to the controls after oxidative stress. Conversely, CTGF treatment led to a higher cell viability rate after H2O2 treatment. CTGF expression is induced by factors that have been linked to glaucoma. An increased level of CTGF appears to protect TM cells against damage induced by stress. The beneficial effect of CTGF for viability of TM cells is likely associated with the effects on increased ECM synthesis and higher contractility of the TM, thereby contributing to reduced aqueous humour outflow facility causing increased intraocular pressure.
Collapse
Affiliation(s)
- Sabrina Kuespert
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|