1
|
Mishra J, Chakraborty S, Nandi P, Manna S, Baral T, Niharika, Roy A, Mishra P, Patra SK. Epigenetic regulation of androgen dependent and independent prostate cancer. Adv Cancer Res 2024; 161:223-320. [PMID: 39032951 DOI: 10.1016/bs.acr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is one of the most common malignancies among men worldwide. Besides genetic alterations, epigenetic modulations including DNA methylation, histone modifications and miRNA mediated alteration of gene expression are the key driving forces for the prostate tumor development and cancer progression. Aberrant expression and/or the activity of the epigenetic modifiers/enzymes, results in aberrant expression of genes involved in DNA repair, cell cycle regulation, cell adhesion, apoptosis, autophagy, tumor suppression and hormone response and thereby disease progression. Altered epigenome is associated with prostate cancer recurrence, progression, aggressiveness and transition from androgen-dependent to androgen-independent phenotype. These epigenetic modifications are reversible and various compounds/drugs targeting the epigenetic enzymes have been developed that are effective in cancer treatment. This chapter focuses on the epigenetic alterations in prostate cancer initiation and progression, listing different epigenetic biomarkers for diagnosis and prognosis of the disease and their potential as therapeutic targets. This chapter also summarizes different epigenetic drugs approved for prostate cancer therapy and the drugs available for clinical trials.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
2
|
Senhorello ILS, Matiz ORS, Canavari IC, Hernandez GV, Anai LA, Navarrete Ampuero RA, Pazzini JM, Prado CM, Meirelles FV, Vasconcelos RDO, Tinucci-Costa EM. Expression of acetylated histones H3 and H4 and histone deacetylase enzymes HDAC1, HDAC2 and HDAC6 in simple mammary carcinomas of female dogs. Front Genet 2023; 14:1257932. [PMID: 38028583 PMCID: PMC10666162 DOI: 10.3389/fgene.2023.1257932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Histone deacetylation is an important mechanism involved in human breast cancer tumorigenesis and recent veterinary oncology studies also demonstrate a similar relationship in some canine neoplasms. The use of HDAC inhibitors in vitro and in vivo has demonstrated antitumor action on several strains of human and animal cancers. The present study aims to correlate the expression of H3K9Ac, H4K12Ac, HDAC1, HDAC2 and HDAC6 in simple mammary carcinomas in dogs with clinicopathological parameters and overall survival time. To this end, 61 samples of simple breast carcinomas were analyzed by the immunohistochemistry technique with subsequent validation of the antibodies by the Western Blot technique. The expressions obtained via a semi-quantitative way were categorized by assigning scores and classified into high or low expressions according to the given score, except for HDAC6, when the marking percentage was considered and subdivided into high and low expressions using the median value. For statistical analysis, the chi-square test or Fisher exact test were used as univariate analysis and correspondence analysis as a multivariate test, in addition to the Kaplan-Meier survival analysis. In the studied samples, the highest frequencies were determined for the high expression proteins H4K12Ac (88.5%), HDAC2 (65.6%) and HDAC6 (56.7%) and the low expression proteins H3K9Ac (73.8%) and HDAC1 (54.1%). An association between the low expression of HDAC1 and the presence of lymph node metastasis (p = 0.035) was indicated by univariate analysis while the high expression of HDAC1 was associated with favorable prognostic factors, such as the absence of lymph node metastasis and low mitotic index by multivariate analysis. Also, by multivariate analysis, the low expression of HDAC6 was correlated with the low expression of Ki67, smaller tumors, and better prognosis factors as well. Protein expression was not correlated with patients' overall survival time (p > 0.05). The high expressions of HDAC2 and HDAC6 in mammary carcinomas in female dogs may be useful information for research involving therapeutic targets with iHDACs since their inhibition favors hyperacetylation and transcription of tumor suppressor genes.
Collapse
Affiliation(s)
- Igor Luiz Salardani Senhorello
- Department of Veterinary Clinic and Surgery, Faculty of Agricultural and Veterinary Sciences, Universidade Estadual Paulista, Jaboticabal, SP, Brazil
- Department of Veterinarry Medicine, Universidade Vila Velha-UVV, Vila Velha, Espírito Santo, Brazil
| | - Oscar Rodrigo Sierra Matiz
- Department of Veterinary Clinic and Surgery, Faculty of Agricultural and Veterinary Sciences, Universidade Estadual Paulista, Jaboticabal, SP, Brazil
| | - Isabela Cristina Canavari
- Department of Veterinary Clinic and Surgery, Faculty of Agricultural and Veterinary Sciences, Universidade Estadual Paulista, Jaboticabal, SP, Brazil
| | | | | | | | | | - Cibele Maria Prado
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, Universidade de São Paulo-USP, Pirassununga, São Paulo, Brazil
| | - Flavio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, Universidade de São Paulo-USP, Pirassununga, São Paulo, Brazil
| | - Rosemeri de Oliveira Vasconcelos
- Department of Veterinary Clinic and Surgery, Faculty of Agricultural and Veterinary Sciences, Universidade Estadual Paulista, Jaboticabal, SP, Brazil
| | - e Mirela Tinucci-Costa
- Department of Veterinary Clinic and Surgery, Faculty of Agricultural and Veterinary Sciences, Universidade Estadual Paulista, Jaboticabal, SP, Brazil
| |
Collapse
|
3
|
Pu J, Sharma A, Hou J, Schmidt-Wolf IG. Histone deacetylase 6: at the interface of cancer and neurodegeneration. Epigenomics 2023; 15:1195-1203. [PMID: 38059314 DOI: 10.2217/epi-2023-0373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
With the recognition in the early 1960s that histones can be post-translationally modified, the list of different post-translational modifications of histones and their biological consequences has continued to expand. In addition, the idea of the 'histone code' hypothesis, later introduced by David Allis and colleagues, further broaden the horizon of chromatin biology. Currently, there is a wealth of knowledge about the transition between the active and the repressive state of chromatin, and modifications of histones remains at the center of chromatin biology. Histone deacetylases (HDACs) in particular are of great importance for the therapeutic success of cancer treatment. Focusing primarily on HDAC6, herein we have briefly highlighted its unique involvement in cancer and also apparently in neurodegeneration.
Collapse
Affiliation(s)
- Jingjing Pu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
| | - Jian Hou
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ingo Gh Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
4
|
Ruan Y, Wang L, Lu Y. HDAC6 inhibitor, ACY1215 suppress the proliferation and induce apoptosis of gallbladder cancer cells and increased the chemotherapy effect of gemcitabine and oxaliplatin. Drug Dev Res 2021; 82:598-604. [PMID: 33428788 DOI: 10.1002/ddr.21780] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022]
Abstract
As an anti-tumor agent, histone deacetylases (HDACs) inhibitors have attracted wide attention. ACY1215 is a highly effective selective inhibitor of HDAC6, which can inhibit many kinds of tumors. Whether the expression of HDAC6 and its new inhibitor ACY1215 can inhibit the proliferation of gallbladder cancer cells and induce their apoptosis remains to be further studied. The purpose of this study was to explore the effects of ACY1215 on the gallbladder cancer cells. Cell proliferation of GBC-SD and SGC-996 was assessed by cell counting kit-8 assay and colony formation assay. Flow cytometry was used to detect the apoptosis of gallbladder cancer cells. Western blot was used to detect the expressions of PCNA,KI67, and apoptosis-related proteins of gallbladder cancer cells. The HDAC6 inhibitor ACY1215 suppressed the proliferation of GBC-SD and SDC-996 cells and promoted the apoptosis of gallbladder cancer cells. The HDAC6 inhibitor ACY1215 increases the chemotherapy effect of gemcitabine and oxaliplatin. ACY1215 could suppress cell proliferation and induce apoptosis of GBC-SD and SGC-996, and increased the chemotherapy effect of gemcitabine and oxaliplatin, which provides a rationale for the combination of HDAC6 selective inhibitors with other anticancer agents in treating gallbladder cancer.
Collapse
Affiliation(s)
- Yi Ruan
- Department of Minimal Invasive Surgery, Ninbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Luoluo Wang
- Department of Minimal Invasive Surgery, Ninbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Yeting Lu
- Department of Minimal Invasive Surgery, Ninbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
5
|
Hu Z, Rong Y, Li S, Qu S, Huang S. Upregulated Histone Deacetylase 6 Associates with Malignant Progression of Melanoma and Predicts the Prognosis of Patients. Cancer Manag Res 2020; 12:12993-13001. [PMID: 33364845 PMCID: PMC7751721 DOI: 10.2147/cmar.s284199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/21/2020] [Indexed: 12/29/2022] Open
Abstract
Background Melanoma is the most malignant tumor among skin tumors, and its morbidity and mortality are increasing year by year. Although melanoma biology has been increasingly studied, no prognostic biomarkers have yet been incorporated into clinical protocols. Histone deacetylase 6 (HDAC6) has been shown to act as a prognostic biomarker in several cancers. Here, we aimed to investigate the predictive value of HDAC6 for the prognosis of cutaneous melanoma patients. Methods Eighty cutaneous melanoma patients were enrolled in this study. The protein and mRNA expression levels of HDAC6 were detected, and the clinical features and survival time of cutaneous melanoma patients with HDAC6 expression were analyzed. Results The results suggested that high HDAC6 expression was significantly associated with unfavorable clinicopathological features. High HDAC6 expression was related to melanoma metastasis and was also associated with a reduced survival time in melanoma patients, and this association remained significant in multivariate analysis adjusted for all other factors. Conclusion These findings validate the utility of HDAC6 expression as an independent biomarker for the prognostication of patients with cutaneous melanoma.
Collapse
Affiliation(s)
- Zhicheng Hu
- Burns Department, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yanchao Rong
- Burns Department, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Shuting Li
- Department of Plastic Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Shanqiang Qu
- Section of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shaobin Huang
- Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Song Y, Xu Y, Pan C, Yan L, Wang ZW, Zhu X. The emerging role of SPOP protein in tumorigenesis and cancer therapy. Mol Cancer 2020; 19:2. [PMID: 31901237 PMCID: PMC6942384 DOI: 10.1186/s12943-019-1124-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
The nuclear speckle-type pox virus and zinc finger (POZ) protein (SPOP), a representative substrate-recognition subunit of the cullin-RING E3 ligase, has been characterized to play a dual role in tumorigenesis and cancer progression. Numerous studies have determined that SPOP suppresses tumorigenesis in a variety of human malignancies such as prostate, lung, colon, gastric, and liver cancers. However, several studies revealed that SPOP exhibited oncogenic function in kidney cancer, suggesting that SPOP could exert its biological function in a cancer type-specific manner. The role of SPOP in thyroid, cervical, ovarian, bone and neurologic cancers has yet to be determined. In this review article, we describe the structure and regulation of SPOP in human cancer. Moreover, we highlight the critical role of SPOP in tumorigenesis based on three major categories: physiological evidence (animal models), pathological evidence (human cancer specimens) and biochemical evidence (downstream ubiquitin substrates). Furthermore, we note that SPOP could be a promising therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Yichi Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Chunyu Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Linzhi Yan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China. .,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
7
|
Song Y, Xu Y, Pan C, Yan L, Wang ZW, Zhu X. The emerging role of SPOP protein in tumorigenesis and cancer therapy. Mol Cancer 2020; 19:2. [PMID: 31901237 DOI: 10.1186/s12943019-1124-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/23/2019] [Indexed: 05/26/2023] Open
Abstract
The nuclear speckle-type pox virus and zinc finger (POZ) protein (SPOP), a representative substrate-recognition subunit of the cullin-RING E3 ligase, has been characterized to play a dual role in tumorigenesis and cancer progression. Numerous studies have determined that SPOP suppresses tumorigenesis in a variety of human malignancies such as prostate, lung, colon, gastric, and liver cancers. However, several studies revealed that SPOP exhibited oncogenic function in kidney cancer, suggesting that SPOP could exert its biological function in a cancer type-specific manner. The role of SPOP in thyroid, cervical, ovarian, bone and neurologic cancers has yet to be determined. In this review article, we describe the structure and regulation of SPOP in human cancer. Moreover, we highlight the critical role of SPOP in tumorigenesis based on three major categories: physiological evidence (animal models), pathological evidence (human cancer specimens) and biochemical evidence (downstream ubiquitin substrates). Furthermore, we note that SPOP could be a promising therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Yichi Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Chunyu Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Linzhi Yan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China.
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
8
|
Liu JR, Yu CW, Hung PY, Hsin LW, Chern JW. High-selective HDAC6 inhibitor promotes HDAC6 degradation following autophagy modulation and enhanced antitumor immunity in glioblastoma. Biochem Pharmacol 2019; 163:458-471. [PMID: 30885763 DOI: 10.1016/j.bcp.2019.03.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/14/2019] [Indexed: 01/03/2023]
Abstract
Glioblastoma is the most fatal type of primary brain cancer, and current treatments for glioblastoma are insufficient. HDAC6 is overexpressed in glioblastoma, and siRNA-mediated knockdown of HDAC6 inhibits glioma cell proliferation. Herein, we report a high-selective HDAC6 inhibitor, J22352, which has PROTAC (proteolysis-targeting chimeras)-like property resulted in both p62 accumulation and proteasomal degradation, leading to proteolysis of aberrantly overexpressed HDAC6 in glioblastoma. The consequences of decreased HDAC6 expression in response to J22352 decreased cell migration, increased autophagic cancer cell death and significant tumor growth inhibition. Notably, J22352 reduced the immunosuppressive activity of PD-L1, leading to the restoration of host anti-tumor activity. These results demonstrate that J22352 promotes HDAC6 degradation and induces anticancer effects by inhibiting autophagy and eliciting the antitumor immune response in glioblastoma. Therefore, this highly selective HDAC6 inhibitor can be considered a potential therapeutic for the treatment of glioblastoma and other cancers.
Collapse
Affiliation(s)
- Jia-Rong Liu
- School of Pharmacy, College of Medicine, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC; Center for Innovative Therapeutics Discovery, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC
| | - Chao-Wu Yu
- School of Pharmacy, College of Medicine, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC; Center for Innovative Therapeutics Discovery, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC; AnnJi Pharmaceutical Co., Ltd. No. 18, Siyuan St., Taipei 10087, Taiwan, ROC
| | - Pei-Yun Hung
- AnnJi Pharmaceutical Co., Ltd. No. 18, Siyuan St., Taipei 10087, Taiwan, ROC
| | - Ling-Wei Hsin
- School of Pharmacy, College of Medicine, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC; Center for Innovative Therapeutics Discovery, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC
| | - Ji-Wang Chern
- School of Pharmacy, College of Medicine, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC; Center for Innovative Therapeutics Discovery, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC.
| |
Collapse
|
9
|
Pizzi M, Trentin L, Visentin A, Saraggi D, Martini V, Guzzardo V, Righi S, Frezzato F, Piazza F, Sabattini E, Semenzato G, Rugge M. Cortactin expression in non-Hodgkin B-cell lymphomas: a new marker for the differential diagnosis between chronic lymphocytic leukemia and mantle cell lymphoma. Hum Pathol 2018; 85:251-259. [PMID: 30458196 DOI: 10.1016/j.humpath.2018.10.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 11/29/2022]
Abstract
Cortactin is a cytoskeletal-remodeling adaptor protein, playing an oncogenic role in solid tumors. Little is known on cortactin expression in non-Hodgkin B-cell lymphomas (B-NHLs). The present study aimed to characterize cortactin expression in B-NHLs and to assess its role in the differential diagnosis of such entities. Cortactin protein expression was first assessed by immunohistochemistry in a series of 131 B-NHLs, including B-cell chronic lymphocytic leukemia (CLL; n = 17), mantle cell lymphoma (MCL; n = 16), follicular lymphoma (FL; n = 25), marginal zone lymphoma (MZL; n = 30), hairy cell leukemia (HCL; n = 10), splenic diffuse red pulp small B-cell lymphomas (SDRPBL; n = 3), and diffuse large B-cell lymphoma (DLBCL; n = 30) cases. Cortactin was expressed in 14 of 17 CLLs, 10 of 10 HCLs, and 22 of 30 DLBCLs. MCLs, SDRPBLs, most FLs, and MZLs were cortactin negative. The immunohistochemical results were in keeping with in silico gene expression data. In CLL, cortactin positivity did correlate with LEF1 and CD200 expression, and the combined positivity for ≥2 markers strongly predicted CLL diagnosis. Such preliminary data suggested a role for cortactin in the differential diagnosis between CLL and MCL. This hypothesis was confirmed in a large validation set of 112 CLLs (n = 55) and MCLs (n = 57), which also disclosed rare cortactin-expressing MCLs. The immunohistochemical and gene expression results were sustained by flow cytometry and Western blot analysis on CLL and MCL cell lines. In conclusion, cortactin is mainly expressed in subsets of CLL and DLBCL and in HCL. Cortactin may represent a novel marker for the differential diagnosis between CLL and MCL.
Collapse
Affiliation(s)
- Marco Pizzi
- General Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padova, Padova, 35121 Italy.
| | - Livio Trentin
- Hematology and Clinical Immunology Unit, Department of Medicine-DIMED, University of Padova, Padova, 35128 Italy
| | - Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine-DIMED, University of Padova, Padova, 35128 Italy
| | - Deborah Saraggi
- General Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padova, Padova, 35121 Italy
| | - Veronica Martini
- Hematology and Clinical Immunology Unit, Department of Medicine-DIMED, University of Padova, Padova, 35128 Italy
| | - Vincenza Guzzardo
- General Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padova, Padova, 35121 Italy
| | - Simona Righi
- Hematopathology Unit, Department of Hematology and Oncology, Sant'Orsola University Hospital, Bologna, 40138 Italy; Department of Experimental Diagnostic and Specialty Medicine, Sant'Orsola University Hospital, Bologna, 40138 Italy
| | - Federica Frezzato
- Hematology and Clinical Immunology Unit, Department of Medicine-DIMED, University of Padova, Padova, 35128 Italy
| | - Francesco Piazza
- Hematology and Clinical Immunology Unit, Department of Medicine-DIMED, University of Padova, Padova, 35128 Italy
| | - Elena Sabattini
- Hematopathology Unit, Department of Hematology and Oncology, Sant'Orsola University Hospital, Bologna, 40138 Italy; Department of Experimental Diagnostic and Specialty Medicine, Sant'Orsola University Hospital, Bologna, 40138 Italy
| | - Gianpietro Semenzato
- Hematology and Clinical Immunology Unit, Department of Medicine-DIMED, University of Padova, Padova, 35128 Italy
| | - Massimo Rugge
- General Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padova, Padova, 35121 Italy
| |
Collapse
|
10
|
Lernoux M, Schnekenburger M, Dicato M, Diederich M. Anti-cancer effects of naturally derived compounds targeting histone deacetylase 6-related pathways. Pharmacol Res 2017; 129:337-356. [PMID: 29133216 DOI: 10.1016/j.phrs.2017.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/02/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022]
Abstract
Alterations of the epigenetic machinery, affecting multiple biological functions, represent a major hallmark enabling the development of tumors. Among epigenetic regulatory proteins, histone deacetylase (HDAC)6 has emerged as an interesting potential therapeutic target towards a variety of diseases including cancer. Accordingly, this isoenzyme regulates many vital cellular regulatory processes and pathways essential to physiological homeostasis, as well as tumor multistep transformation involving initiation, promotion, progression and metastasis. In this review, we will consequently discuss the critical implications of HDAC6 in distinct mechanisms relevant to physiological and cancerous conditions, as well as the anticancer properties of synthetic, natural and natural-derived compounds through the modulation of HDAC6-related pathways.
Collapse
Affiliation(s)
- Manon Lernoux
- Laboratory of Molecular and Cellular Biology of Cancer, Kirchberg Hospital, 9, Edward Steichen Street, L-2540 Luxembourg, Luxembourg
| | - Michael Schnekenburger
- Laboratory of Molecular and Cellular Biology of Cancer, Kirchberg Hospital, 9, Edward Steichen Street, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratory of Molecular and Cellular Biology of Cancer, Kirchberg Hospital, 9, Edward Steichen Street, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, South Korea.
| |
Collapse
|
11
|
Yin M, Ma W, An L. Cortactin in cancer cell migration and invasion. Oncotarget 2017; 8:88232-88243. [PMID: 29152154 PMCID: PMC5675706 DOI: 10.18632/oncotarget.21088] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Cortactin, a substrate of sarcoma (Src) kinases, is an actin-binding protein that is involved in cytoskeletal regulation, and is frequently overexpressed in cancer cells. Binding to the actin related protein 2/3 (Arp2/3) complex stimulates cortactin activity, which promotes F-actin nucleation and assembly. Cortactin promotes cancer cell migration and invasion, and plays a pivotal role in invadopodia formation and extra cellular matrix degradation. Overexpression of cortactin, by amplification of the chromosomal band 11q13, increases tumor aggressiveness. In this review, we report on the current knowledge and potential mechanisms of action of cortactin as a critical mediator of cancer cell migration and invasion.
Collapse
Affiliation(s)
- Miao Yin
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Wenqing Ma
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Liguo An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|