1
|
Xu F, Hu J, Li X, Yang L, Jiang S, Jiang T, Cheng B, Du H, Wang R, Deng Y, Gao W, Li Y, Zhu Y. Inhibition of platelet activation alleviates diabetes-associated cognitive dysfunction via attenuating blood-brain barrier injury. Brain Res Bull 2025; 221:111211. [PMID: 39828041 DOI: 10.1016/j.brainresbull.2025.111211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/01/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Cognitive dysfunction has become the second leading cause of death among the diabetic patients. In pre-diabetic stage, blood-brain barrier (BBB) injury occurs and induced the microvascular complications of diabetes, especially, diabetes-associated cognitive dysfunction (DACD). Endothelial cells are the major component of BBB, on which the increased expression of CD40 could mediate BBB dysfunction in diabetics. Since platelets play an important role in regulating endothelial cell barrier function and over 95 % of the circulating soluble CD40 ligand (sCD40L) is derived from activated platelets, we speculated that the release of CD40L from activated platelets induced by diabetes was the key mechanism that aggravated BBB injury and leaded to DACD. We performed inhibition of platelet activation on diabetic and non-diabetic mice, with or without cilostazol treatment, and then compared cognitive function, platelet activation, BBB structure and permeability. In vitro, mouse brain microvascular endothelial cell line (b.End3) were exposed to CD40L for 24 h at 5.5 mM or 30 mM glucose media after silencing CD40 and HIF1α or not to investigate the effects of CD40 on BBB disruption and the underlying molecular pathways. Inhibition of platelet activation improved cognitive behaviors in diabetic mice, accompanied with reduced BBB permeability, increased tight junction proteins, balanced Aβ transporters, as well as attenuated Aβ deposition and hippocampal neurons damage. In vitro, CD40L increased HIF1α, diminished tight junction proteins and dysregulated Aβ transporters in b.End3 cells, which could be restored by CD40 siRNA and HIF1α siRNA. Hence, inhibition of platelet activation ameliorates DACD via alleviating BBB injury, which involving the regulation of CD40L-CD40-HIF1α signaling pathway. Our study may demonstrate a potential therapeutic target for the treatment of DACD.
Collapse
Affiliation(s)
- Fuxing Xu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Anesthesiology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, China.
| | - Juan Hu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712021, China.
| | - Xuying Li
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, China.
| | - Lan Yang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Shiqiu Jiang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Tao Jiang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Bo Cheng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Hailiang Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Ruiduo Wang
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.
| | - Yingying Deng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Wei Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Yaomin Zhu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
2
|
Amalia M, Puteri MU, Saputri FC, Sauriasari R, Widyantoro B. Platelet Glycoprotein-Ib (GPIb) May Serve as a Bridge between Type 2 Diabetes Mellitus (T2DM) and Atherosclerosis, Making It a Potential Target for Antiplatelet Agents in T2DM Patients. Life (Basel) 2023; 13:1473. [PMID: 37511848 PMCID: PMC10381765 DOI: 10.3390/life13071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a persistent metabolic condition that contributes to the development of cardiovascular diseases. Numerous studies have provided evidence that individuals with T2DM are at a greater risk of developing cardiovascular diseases, typically two to four times more likely than those without T2DM, mainly due to an increased risk of atherosclerosis. The rupture of an atherosclerotic plaque leading to pathological thrombosis is commonly recognized as a significant factor in advancing cardiovascular diseases caused by TD2M, with platelets inducing the impact of plaque rupture in established atherosclerosis and predisposing to the primary expansion of atherosclerosis. Studies suggest that individuals with T2DM have platelets that display higher baseline activation and reactivity than those without the condition. The expression enhancement of several platelet receptors is known to regulate platelet activation signaling, including platelet glycoprotein-Ib (GPIb). Furthermore, the high expression of platelet GP1b has been reported to increase the risk of platelet adhesion, platelet-leucocyte interaction, and thrombo-inflammatory pathology. However, the study exploring the role of GP1b in promoting platelet activation-induced cardiovascular diseases in T2DM patients is still limited. Therefore, we summarize the important findings regarding pathophysiological continuity between T2DM, platelet GPIb, and atherosclerosis and highlight the potential therapy targeting GPIb as a novel antiplatelet agent for preventing further cardiovascular incidents in TD2M patients.
Collapse
Affiliation(s)
- Muttia Amalia
- Doctoral Program, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Meidi Utami Puteri
- Laboratory of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Fadlina Chany Saputri
- Laboratory of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Rani Sauriasari
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Bambang Widyantoro
- National Cardiovascular Center Harapan Kita, Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta 11420, Indonesia
| |
Collapse
|
3
|
Oudeh S, Javahery Vayghan A, Ahmadi-Hamedani M. Duration of the diabetic state altered platelet indices from baseline values in a streptozotocin-induced rat model for type 1 diabetes mellitus. Vet Clin Pathol 2023; 52:236-242. [PMID: 36973508 DOI: 10.1111/vcp.13229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/08/2022] [Accepted: 12/07/2022] [Indexed: 03/29/2023]
Abstract
BACKGROUND Changes in platelet indices in naturally occurring type I diabetes mellitus (T1DM) have been described in several studies. In this study, platelet indices such as platelet count (PLT), plateletcrit (PCT), mean platelet volume (MPV), platelet distribution width (PDW), and MPV to PLT ratio were investigated according to diabetic duration after streptozotocin (STZ)-induced T1DM, as well as for their correlation with glucose. METHODS Forty healthy adult Wistar rats were randomly assigned to four experimental groups of ten (5 rats of each sex), including the control group, the 7, 14, and 28 days diabetic groups (D7, D14, and D28, respectively). RESULTS In diabetic groups, plasma glucose was significantly higher than in control (P < 0.01). D7, D14, and D28 groups presented significantly lower PLT than the control (P < 0. 01). A significant decrease in PCT was observed in D14 and D28 females (P < 0.05). Mean platelet volume was significantly higher in the D28 group than in to control. D28 females also showed a significant difference in PLT, MPV, and the MPV-to-PLT ratio compared with D7 females (P < 0.05). A comparison between D28 females and males showed a significant difference in PDW (P < 0.05). Both females and males showed a significant correlation between glucose and PLT, PCT, MPV, and the MPV-to-PLT ratio. CONCLUSIONS Platelet indices change significantly with the duration of diabetes compared with the baseline values, and female and male rats did not have significant differences in platelet indices in any period except the 28 days.
Collapse
Affiliation(s)
- Sahar Oudeh
- Faculty of Veterinary Medicine, Department of Pathobiology, Semnan University, Semnan, Iran
| | - Abbas Javahery Vayghan
- Faculty of Veterinary Medicine, Department of Pathobiology, Semnan University, Semnan, Iran
| | - Mahmood Ahmadi-Hamedani
- Faculty of Veterinary Medicine, Department of Clinical Sciences, Semnan University, Semnan, Iran
| |
Collapse
|
4
|
Rodent Models of Diabetic Retinopathy as a Useful Research Tool to Study Neurovascular Cross-Talk. BIOLOGY 2023; 12:biology12020262. [PMID: 36829539 PMCID: PMC9952991 DOI: 10.3390/biology12020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Diabetes is a group of metabolic diseases leading to dysfunction of various organs, including ocular complications such as diabetic retinopathy (DR). Nowadays, DR treatments involve invasive options and are applied at the sight-threatening stages of DR. It is important to investigate noninvasive or pharmacological methods enabling the disease to be controlled at the early stage or to prevent ocular complications. Animal models are useful in DR laboratory practice, and this review is dedicated to them. The first part describes the characteristics of the most commonly used genetic rodent models in DR research. The second part focuses on the main chemically induced models. The authors pay particular attention to the streptozotocin model. Moreover, this section is enriched with practical aspects and contains the current protocols used in research in the last three years. Both parts include suggestions on which aspect of DR can be tested using a given model and the disadvantages of each model. Although animal models show huge variability, they are still an important and irreplaceable research tool. Note that the choice of a research model should be thoroughly considered and dependent on the aspect of the disease to be analyzed.
Collapse
|
5
|
Diabetes and Hyperglycemia Affect Platelet GPIIIa Expression. Effects on Adhesion Potential of Blood Platelets from Diabetic Patients under In Vitro Flow Conditions. Int J Mol Sci 2020; 21:ijms21093222. [PMID: 32370146 PMCID: PMC7247361 DOI: 10.3390/ijms21093222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Blood platelets play a crucial role in the early stages of atherosclerosis development. The process is believed to require firm adhesion of platelets to atherosclerosis-prone sites of the artery. However, little evidence exists regarding whether the blood platelets of individuals with pathological conditions associated with atherosclerosis have higher potential for adhesion. This process is to a large extent dependent on receptors present on the platelet membrane. Therefore, the aim of the presented study was to determine whether blood platelets from diabetic patients have higher capacity of adhesion under flow conditions and how diabetes affects one of the crucial platelet receptors involved in the process of adhesion-GPIIIa. The study compares the ability of platelets from non-diabetic and diabetic humans to interact with fibrinogen and von Willebrand factor, two proteins found in abundance on an inflamed endothelium, under flow conditions. The activation and reactivity of the blood platelets were also characterized by flow cytometry. Platelets from diabetic patients did not demonstrate enhanced adhesion to either studied protein, although they presented increased basal activation and responsiveness towards low concentrations of agonists. Platelets from diabetic patients were characterized by lower expression of GPIIIa, most likely due to an enhanced formation of platelet-derived microparticles PMPs, as supported by the observation of elevated concentration of this integrin and of GPIIIa-positive PMPs in plasma. We conclude that altered functionality of blood platelets in diabetes does not increase their adhesive potential. Increased glycation and decrease in the amount of GPIIIa on platelets may be partially responsible for this effect. Therefore, higher frequency of interactions of platelets with the endothelium, which is observed in animal models of diabetes, is caused by other factors. A primary cause may be a dysfunctional vascular wall.
Collapse
|
6
|
Przygodzki T, Kassassir H, Talar M, Siewiera K, Watala C. Effects of three-month streptozotocin-induced diabetes in mice on blood platelet reactivity, COX-1 expression and adhesion potential. Int J Exp Pathol 2019; 100:41-48. [PMID: 30811756 DOI: 10.1111/iep.12298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/29/2018] [Accepted: 12/06/2018] [Indexed: 12/25/2022] Open
Abstract
Diabetes is associated with an increased risk of cardiovascular disease. This is partially attributed to an altered activation status of blood platelets in this disease. Previously, alterations have been shown in COX-1 and protease activated receptor (PAR)-3 receptor expression in platelets in two animal models of diabetes, there have not been studies which address expression of these proteins in mice with long-term streptozotocin (STZ)-induced diabetes. We have also addressed the effect of diabetes on platelet adhesion under flow conditions. With the use of flow cytometry, we have shown that certain markers of platelet basal activation, such as active form of αII b β3 and of CD40L were increased in STZ-induced diabetic mice. Platelets from STZ-induced diabetic mice were also more reactive when stimulated with PAR-4 activating peptide as revealed by higher expression of active form of αII b β3 , membrane-bound on vWillebrand Factor and binding of exogenous fluorescein isothyanate-labelled fibrinogen. Expression of COX-1 and production of thromboxane A2 in platelets of STZ-induced diabetic mice were higher than in control animals. We observed no effect of diabetes on ability of platelets to form stable adhesions with fibrinogen in flow conditions. We conclude that although certain similarities exist between patterns of activation of platelets in animal models of diabetes, the differences should also be taken into account.
Collapse
Affiliation(s)
- Tomasz Przygodzki
- Department of Haemostatic Disorders, Chair of Biomedical Sciences, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Hassan Kassassir
- Department of Haemostatic Disorders, Chair of Biomedical Sciences, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Marcin Talar
- Department of Haemostatic Disorders, Chair of Biomedical Sciences, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Karolina Siewiera
- Department of Haemostatic Disorders, Chair of Biomedical Sciences, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Cezary Watala
- Department of Haemostatic Disorders, Chair of Biomedical Sciences, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| |
Collapse
|