1
|
Trinh VQH, Ankenbauer KE, Torbit SM, Liu J, Batardiere M, Kumar B, Maurer HC, Revetta F, Chen Z, Kruse A, Judd A, Copeland C, Wong J, Ben-Levy O, Jarvis B, Brown M, Brown JW, Das K, Makino Y, Spraggins JM, Lau K, Azadi P, Maitra A, Tan MCB, DelGiorno KE. Mutant GNAS drives a pyloric metaplasia with tumor suppressive glycans in intraductal papillary mucinous neoplasia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.25.581948. [PMID: 38464029 PMCID: PMC10925208 DOI: 10.1101/2024.02.25.581948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
BACKGROUND & AIMS Intraductal Papillary Mucinous Neoplasms (IPMNs) are cystic lesions and bona fide precursors for pancreatic ductal adenocarcinoma (PDAC). Recent studies have shown that pancreatic precancer is characterized by a transcriptomic program similar to gastric metaplasia. The aims of this study were to assay IPMN for pyloric markers, to identify molecular drivers, and to determine a functional role for this program in the pancreas. METHODS Pyloric marker expression was evaluated by RNA-seq and multiplex immunostaining in patient samples. Cell lines and organoids expressing KrasG12D +/- GNASR201C underwent RNA sequencing. A PyScenic-based regulon analysis was performed to identify molecular drivers, and candidates were evaluated by RNA-seq, immunostaining, and small interfering RNA knockdown. Glycosylation profiling was performed to identify GNASR201C-driven changes. Glycan abundance was evaluated in patient samples. RESULTS Pyloric markers were identified in human IPMN. GNASR201C drove expression of this program as well as an indolent phenotype characterized by distinct glycosyltransferase changes. Glycan profiling identified an increase in LacdiNAcs and loss of pro-tumorigenic Lewis antigens. Knockdown of transcription factors Spdef or Creb3l1 or chitinase treatment reduced LacdiNAc deposition and reversed the indolent phenotype. LacdiNAc and 3-sulfoLeA/C abundance discriminated low from high grade patient IPMN. CONCLUSION GNASR201C drives an indolent phenotype in IPMN by amplifying a differentiated, pyloric phenotype through SPDEF/CREB3L1 which is characterized by distinct glycans. Acting as a glycan rheostat, mutant GNAS elevates LacdiNAcs at the expense of pro-tumorigenic acidic Lewis epitopes, inhibiting cancer cell invasion and disease progression. LacdiNAc and 3-Sulfo-LeA/C are mutually exclusive and may serve as markers of disease progression.
Collapse
|
2
|
Wang H, Gao J, Wen L, Huang K, Liu H, Zeng L, Zeng Z, Liu Y, Mo Z. Ion channels in acinar cells in acute pancreatitis: crosstalk of calcium, iron, and copper signals. Front Immunol 2024; 15:1444272. [PMID: 39606246 PMCID: PMC11599217 DOI: 10.3389/fimmu.2024.1444272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
The initial stages of acute pancreatitis (AP) are characterized by a significant event - acinar ductal metaplasia (ADM). This process is a crucial feature of both acute and chronic pancreatitis, serving as the first step in the development of pancreatic cancer. Ion channels are integral transmembrane proteins that play a pivotal role in numerous biological processes by modulating ion flux. In many diseases, the expression and activity of ion channels are often dysregulated. Metal ions, including calcium ions (Ca2+), ferrous ions (Fe2+), and Copper ions (Cu2+), assume a distinctive role in cellular metabolism. These ions possess specific biological properties relevant to cellular function. However, the interactions among these ions exacerbate the imbalance within the intracellular environment, resulting in cellular damage and influencing the progression of AP. A more in-depth investigation into the mechanisms by which these ions interact with acinar cells is essential for elucidating AP's pathogenesis and identifying novel therapeutic strategies. Currently, treatment for AP primarily focuses on pain relief, complications prevention, and prognosis improvement. There are limited specific treatments targeting acinous cell dedifferentiation or ion imbalance. This study aims to investigate potential therapeutic strategies by examining ion crosstalk within acinar cells in the context of acute pancreatitis.
Collapse
Affiliation(s)
- Hanli Wang
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Jianhua Gao
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Lingling Wen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kejun Huang
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Huixian Liu
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Linsheng Zeng
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Zhongyi Zeng
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Yuxiang Liu
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Zhizhun Mo
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Souza JLN, Antunes-Porto AR, da Silva Oliveira I, Amorim CCO, Pires LO, de Brito Duval I, Amaral LVBD, Souza FR, Oliveira EA, Cassali GD, Cardoso VN, Fernandes SOA, Fujiwara RT, Russo RC, Bueno LL. Screening and validating the optimal panel of housekeeping genes for 4T1 breast carcinoma and metastasis studies in mice. Sci Rep 2024; 14:26476. [PMID: 39488625 PMCID: PMC11531515 DOI: 10.1038/s41598-024-77126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
The 4T1 model is extensively employed in murine studies to elucidate the mechanisms underlying the carcinogenesis of triple-negative breast cancer. Molecular biology serves as a cornerstone in these investigations. However, accurate gene expression analyses necessitate data normalization employing housekeeping genes (HKGs) to avert spurious results. Here, we initially delve into the characteristics of the tumor evolution induced by 4T1 in mice, underscoring the imperative for additional tools for tumor monitoring and assessment methods for tracking the animals, thereby facilitating prospective studies employing this methodology. Subsequently, leveraging various software platforms, we assessed ten distinct HKGs (GAPDH, 18 S, ACTB, HPRT1, B2M, GUSB, PGK1, CCSER2, SYMPK, ANKRD17) not hitherto evaluated in the 4T1 breast cancer model, across tumors and diverse tissues afflicted by metastasis. Our principal findings underscore GAPDH as the optimal HKG for gene expression analyses in tumors, while HPRT1 emerged as the most stable in the liver and CCSER2 in the lung. These genes demonstrated consistent expression and minimal variation among experimental groups. Furthermore, employing these HKGs for normalization, we assessed TNF-α and VEGF expression in tissues and discerned significant disparities among groups. We posit that this constitutes the inaugural delineation of an ideal HKG for experiments utilizing the 4T1 model, particularly in vivo settings.
Collapse
Affiliation(s)
- Jorge Lucas Nascimento Souza
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Rafaela Antunes-Porto
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabela da Silva Oliveira
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Chiara Cássia Oliveira Amorim
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz Octávio Pires
- Laboratory of Radioisotopes, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabela de Brito Duval
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luisa Vitor Braga do Amaral
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Rezende Souza
- Laboratory of Comparative Pathology, Department of Genetal Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Evelyn Ane Oliveira
- Laboratory of Comparative Pathology, Department of Genetal Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geovanni Dantas Cassali
- Laboratory of Comparative Pathology, Department of Genetal Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Valbert Nascimento Cardoso
- Laboratory of Radioisotopes, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Simone Odília Antunes Fernandes
- Laboratory of Radioisotopes, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270- 901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Haque PS, Kapur N, Barrett TA, Theiss AL. Mitochondrial function and gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2024; 21:537-555. [PMID: 38740978 DOI: 10.1038/s41575-024-00931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Mitochondria are dynamic organelles that function in cellular energy metabolism, intracellular and extracellular signalling, cellular fate and stress responses. Mitochondria of the intestinal epithelium, the cellular interface between self and enteric microbiota, have emerged as crucial in intestinal health. Mitochondrial dysfunction occurs in gastrointestinal diseases, including inflammatory bowel diseases and colorectal cancer. In this Review, we provide an overview of the current understanding of intestinal epithelial cell mitochondrial metabolism, function and signalling to affect tissue homeostasis, including gut microbiota composition. We also discuss mitochondrial-targeted therapeutics for inflammatory bowel diseases and colorectal cancer and the evolving concept of mitochondrial impairment as a consequence versus initiator of the disease.
Collapse
Affiliation(s)
- Parsa S Haque
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Neeraj Kapur
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Terrence A Barrett
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA.
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA.
| |
Collapse
|
5
|
Zheng C, Wang J, Wang J, Zhang Q, Liang T. Cell of Origin of Pancreatic cancer: Novel Findings and Current Understanding. Pancreas 2024; 53:e288-e297. [PMID: 38277420 PMCID: PMC11882172 DOI: 10.1097/mpa.0000000000002301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/08/2023] [Indexed: 01/28/2024]
Abstract
ABSTRACT Pancreatic ductal adenocarcinoma (PDAC) stands as one of the most lethal diseases globally, boasting a grim 5-year survival prognosis. The origin cell and the molecular signaling pathways that drive PDAC progression are not entirely understood. This review comprehensively outlines the categorization of PDAC and its precursor lesions, expounds on the creation and utility of genetically engineered mouse models used in PDAC research, compiles a roster of commonly used markers for pancreatic progenitors, duct cells, and acinar cells, and briefly addresses the mechanisms involved in the progression of PDAC. We acknowledge the value of precise markers and suitable tracing tools to discern the cell of origin, as it can facilitate the creation of more effective models for PDAC exploration. These conclusions shed light on our existing understanding of foundational genetically engineered mouse models and focus on the origin and development of PDAC.
Collapse
Affiliation(s)
- Chenlei Zheng
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
| | - Jianing Wang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
| | - Junli Wang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
| | - Qi Zhang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province
- Zhejiang University Cancer Center, Hangzhou, China
| | - Tingbo Liang
- From the Department of Hepatobiliary and Pancreatic Surgery
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province
- Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
6
|
Chen Y, Zhou N, Guo D, He X, Tang H, Wang L, Xu Y, Xu T. Acinar cell carcinoma of gastric ectopic pancreas origin: a case report and literature review. Diagn Pathol 2023; 18:37. [PMID: 36927376 PMCID: PMC10018953 DOI: 10.1186/s13000-023-01324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Primary pancreatic-type acinar cell carcinoma of the stomach is extremely rare, often misdiagnosed, and of unclear origin. CASE PRESENTATION We report the case of a primary pure pancreatic-type acinar cell carcinoma of the stomach in a 58-year-old woman. This is the first reported case to exhibit residual ectopic pancreatic tissue adjacent to the tumor serving as evidence for the origin of the carcinoma. Furthermore, we summarized the clinicopathological features of pancreatic-type acinar cell carcinoma of the stomach in order to further understand this solid tumor. CONCLUSIONS Primary pancreatic-type acinar cell carcinoma of the stomach is rare. Data on tumors of this histological type are still relatively scarce, and more in-depth research is needed to elucidate their molecular biological characteristics and prognosis.
Collapse
Affiliation(s)
- Ying Chen
- Departments of Pathology, Guiqian International General Hospital, Guiyang, Guizhou Province, China
| | - Ning Zhou
- Departments of Pathology, Sichuan Province, Sichuan Mianyang 404 Hospital, Mianyang, China
| | - Deyu Guo
- Departments of Pathology, Guiqian International General Hospital, Guiyang, Guizhou Province, China.
| | - Xin He
- Departments of Pathology, Guiqian International General Hospital, Guiyang, Guizhou Province, China
| | - Hao Tang
- Departments of Pathology, Guiqian International General Hospital, Guiyang, Guizhou Province, China
| | - Lina Wang
- Departments of Pathology, Guiqian International General Hospital, Guiyang, Guizhou Province, China
| | - Yujuan Xu
- Departments of Pathology, Guiqian International General Hospital, Guiyang, Guizhou Province, China
| | - Tingting Xu
- Departments of Pathology, Sichuan Province, Sichuan Mianyang 404 Hospital, Mianyang, China
| |
Collapse
|
7
|
COOBoostR: An Extreme Gradient Boosting-Based Tool for Robust Tissue or Cell-of-Origin Prediction of Tumors. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010071. [PMID: 36676020 PMCID: PMC9865194 DOI: 10.3390/life13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
We present here COOBoostR, a computational method designed for the putative prediction of the tissue- or cell-of-origin of various cancer types. COOBoostR leverages regional somatic mutation density information and chromatin mark features to be applied to an extreme gradient boosting-based machine-learning algorithm. COOBoostR ranks chromatin marks from various tissue and cell types, which best explain the somatic mutation density landscape of any sample of interest. A specific tissue or cell type matching the chromatin mark feature with highest explanatory power is designated as a potential tissue- or cell-of-origin. Through integrating either ChIP-seq based chromatin data, along with regional somatic mutation density data derived from normal cells/tissue, precancerous lesions, and cancer types, we show that COOBoostR outperforms existing random forest-based methods in prediction speed, with comparable or better tissue or cell-of-origin prediction performance (prediction accuracy-normal cells/tissue: 76.99%, precancerous lesions: 95.65%, cancer cells: 89.39%). In addition, our results suggest a dynamic somatic mutation accumulation at the normal tissue or cell stage which could be intertwined with the changes in open chromatin marks and enhancer sites. These results further represent chromatin marks shaping the somatic mutation landscape at the early stage of mutation accumulation, possibly even before the initiation of precancerous lesions or neoplasia.
Collapse
|
8
|
Dinh TA, Utria AF, Barry KC, Ma R, Abou-Alfa GK, Gordan JD, Jaffee EM, Scott JD, Zucman-Rossi J, O’Neill AF, Furth ME, Sethupathy P. A framework for fibrolamellar carcinoma research and clinical trials. Nat Rev Gastroenterol Hepatol 2022; 19:328-342. [PMID: 35190728 PMCID: PMC9516439 DOI: 10.1038/s41575-022-00580-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Fibrolamellar carcinoma (FLC), a rare, lethal hepatic cancer, occurs primarily in adolescents and young adults. Unlike hepatocellular carcinoma, FLC has no known association with viral, metabolic or chemical agents that cause cirrhosis. Currently, surgical resection is the only treatment demonstrated to achieve cure, and no standard of care exists for systemic therapy. Progress in FLC research illuminates a transition from an obscure cancer to one for which an interactive community seems poised to uncover fundamental mechanisms and initiate translation towards novel therapies. In this Roadmap, we review advances since the seminal discovery in 2014 that nearly all FLC tumours express a signature oncogene (DNAJB1-PRKACA) encoding a fusion protein (DNAJ-PKAc) in which the J-domain of a heat shock protein 40 (HSP40) co-chaperone replaces an amino-terminal segment of the catalytic subunit of the cyclic AMP-dependent protein kinase (PKA). Important gains include increased understanding of oncogenic pathways driven by DNAJ-PKAc; identification of potential therapeutic targets; development of research models; elucidation of immune mechanisms with potential for the development of immunotherapies; and completion of the first multicentre clinical trials of targeted therapy for FLC. In each of these key areas we propose a Roadmap for future progress.
Collapse
Affiliation(s)
- Timothy A. Dinh
- Medical Scientist Training Program, University of North Carolina, Chapel Hill, NC, USA.,Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.,These authors contributed equally: Timothy A. Dinh, Alan F. Utria, Kevin C. Barry
| | - Alan F. Utria
- Department of Surgery, University of Washington, Seattle, WA, USA.,These authors contributed equally: Timothy A. Dinh, Alan F. Utria, Kevin C. Barry
| | - Kevin C. Barry
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,These authors contributed equally: Timothy A. Dinh, Alan F. Utria, Kevin C. Barry
| | - Rosanna Ma
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Ghassan K. Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Medical College at Cornell University, New York, NY, USA
| | - John D. Gordan
- Gastrointestinal oncology, University of California at San Francisco Comprehensive Cancer Center, San Francisco, CA, USA
| | - Elizabeth M. Jaffee
- Department of oncology, Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - John D. Scott
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne université, Inserm, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Allison F. O’Neill
- Department of Paediatric Hematology/oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | - Mark E. Furth
- Fibrolamellar Cancer Foundation, Greenwich, CT, USA.,;
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.,;
| |
Collapse
|
9
|
Nobili S, Mini E. Special Issue: “Gastrointestinal Cancers and Personalized Medicine”. J Pers Med 2022; 12:jpm12030338. [PMID: 35330338 PMCID: PMC8953463 DOI: 10.3390/jpm12030338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Affiliation(s)
- Stefania Nobili
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence:
| | - Enrico Mini
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
- DENOTHE Excellence Center, University of Florence, 50139 Florence, Italy
| |
Collapse
|
10
|
Hill W, Zaragkoulias A, Salvador-Barbero B, Parfitt GJ, Alatsatianos M, Padilha A, Porazinski S, Woolley TE, Morton JP, Sansom OJ, Hogan C. EPHA2-dependent outcompetition of KRASG12D mutant cells by wild-type neighbors in the adult pancreas. Curr Biol 2021; 31:2550-2560.e5. [PMID: 33891893 PMCID: PMC8231095 DOI: 10.1016/j.cub.2021.03.094] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 12/22/2022]
Abstract
As we age, our tissues are repeatedly challenged by mutational insult, yet cancer occurrence is a relatively rare event. Cells carrying cancer-causing genetic mutations compete with normal neighbors for space and survival in tissues. However, the mechanisms underlying mutant-normal competition in adult tissues and the relevance of this process to cancer remain incompletely understood. Here, we investigate how the adult pancreas maintains tissue health in vivo following sporadic expression of oncogenic Kras (KrasG12D), the key driver mutation in human pancreatic cancer. We find that when present in tissues in low numbers, KrasG12D mutant cells are outcompeted and cleared from exocrine and endocrine compartments in vivo. Using quantitative 3D tissue imaging, we show that before being cleared, KrasG12D cells lose cell volume, pack into round clusters, and E-cadherin-based cell-cell adhesions decrease at boundaries with normal neighbors. We identify EphA2 receptor as an essential signal in the clearance of KrasG12D cells from exocrine and endocrine tissues in vivo. In the absence of functional EphA2, KrasG12D cells do not alter cell volume or shape, E-cadherin-based cell-cell adhesions increase and KrasG12D cells are retained in tissues. The retention of KRasG12D cells leads to the early appearance of premalignant pancreatic intraepithelial neoplasia (PanINs) in tissues. Our data show that adult pancreas tissues remodel to clear KrasG12D cells and maintain tissue health. This study provides evidence to support a conserved functional role of EphA2 in Ras-driven cell competition in epithelial tissues and suggests that EphA2 is a novel tumor suppressor in pancreatic cancer.
Collapse
Affiliation(s)
- William Hill
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Andreas Zaragkoulias
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Beatriz Salvador-Barbero
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Geraint J Parfitt
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; School of Optometry & Vision Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Markella Alatsatianos
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Ana Padilha
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Sean Porazinski
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Thomas E Woolley
- School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4AG, UK
| | - Jennifer P Morton
- CRUK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Owen J Sansom
- CRUK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Catherine Hogan
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK.
| |
Collapse
|
11
|
Wang W, Xie X, Zhou Z, Zhang H. Expression Analysis of MIST1 and EMT Markers in Primary Tumor Samples Points to MIST1 as a Biomarker of Cervical Cancer. Int J Gen Med 2021; 14:1293-1300. [PMID: 33883927 PMCID: PMC8055369 DOI: 10.2147/ijgm.s307367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/01/2021] [Indexed: 12/09/2022] Open
Abstract
Background Mist1 is a basic transcription factor, which plays an important role in the development of multiple organs, and may also regulate tumor progression by mediating epithelial-mesenchymal transformation. However, there is lack of research on its role of squamous cell carcinoma, especially in cervical squamous cell carcinoma. Methods Bioinformatic methods were used to analyze gene expression, correlation, and patient survival according to the TCGA database. Thirty pairs of cancer tissues and distal cancer tissues from cervical cancer patients who received radical surgery were enrolled in the study. The expression of Mist1 was analyzed using Western blot. Furthermore, the potential associations among Mist1 expression, EMT biomarkers and various clinicopathological characteristics were investigated. All statistical tests employed in this study were two-sided, and P values <0.05 were deemed statistically significant. Results Overall survival data were obtained from TCGA-CESC dataset, containing 3 control samples and 305 tumor samples. The expression of Mist1 was significantly higher in primary tumor than in normal tissues (P<0.001). The samples were divided into a low Mist1 expression group (n=144) and a high Mist1 expression group (n=146) according to the median expression level. Kaplan–Meier survival analysis revealed that high expression of Mist1 was significantly correlated with poor overall survival (P=0.032). We further explored the relationships between Mist1 and EMT. Among the 30 primary cervical cancer specimens investigated, the difference in Mist1 expressed statuses between cervical cancer tissues and distal noncancerous cervical tissues was significant (P=0.001). And the epithelial cell marker E-cadherin was downregulated in Mist1 overexpressed cervical cancer cells; however, the mesenchymal marker N-Cadherin and Twist was upregulated. Conclusion Our study found that Mist1 seemed to play the role of oncogene in cervical squamous cell carcinoma and could be a potential biomarker.
Collapse
Affiliation(s)
- Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xin Xie
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Zhangjian Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| |
Collapse
|
12
|
Liu L, Tian C, Dong B, Xia M, Cai Y, Hu R, Chu X. Models to evaluate the barrier properties of mucus during drug diffusion. Int J Pharm 2021; 599:120415. [PMID: 33647411 DOI: 10.1016/j.ijpharm.2021.120415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Mucus is widely disseminated in the nasal cavity, oral cavity, respiratory tract, eyes, gastrointestinal tract, and reproductive tract to prevent the invasion of pathogenic bacteria and toxins. The mucus layer through its continuous secretion can prevent the passage of macromolecular substances such as pathogenic bacteria and toxins, thereby reducing the occurrence of inflammation. Without a doubt, mucus also hinders oral absorption. The physiological and biochemical properties of intestinal mucus and the different types of mucus barrier models need to be predominated. To find ways to increase the bioavailability of drugs in the future, this article summarizes mucus composition, barrier properties, mucus models, and mucoadhesive/mucopenetrating particles to highlight the information they can afford. Collectively, the review seeks to provide a state-of-the-art roadmap for researchers who must contend with this critical barrier to drug delivery.
Collapse
Affiliation(s)
- Liu Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chunling Tian
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Baoqi Dong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Mengqiu Xia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ye Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Rongfeng Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
13
|
Alison MR. The cellular origins of cancer with particular reference to the gastrointestinal tract. Int J Exp Pathol 2020; 101:132-151. [PMID: 32794627 PMCID: PMC7495846 DOI: 10.1111/iep.12364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022] Open
Abstract
Stem cells or their closely related committed progenitor cells are the likely founder cells of most neoplasms. In the continually renewing and hierarchically organized epithelia of the oesophagus, stomach and intestine, homeostatic stem cells are located at the beginning of the cell flux, in the basal layer of the oesophagus, the isthmic region of gastric oxyntic glands and at the bottom of gastric pyloric-antral glands and colonic crypts. The introduction of mutant oncogenes such as KrasG12D or loss of Tp53 or Apc to specific cell types expressing the likes of Lgr5 and Mist1 can be readily accomplished in genetically engineered mouse models to initiate tumorigenesis. Other origins of cancer are discussed including 'reserve' stem cells that may be activated by damage or through disruption of morphogen gradients along the crypt axis. In the liver and pancreas, with little cell turnover and no obvious stem cell markers, the importance of regenerative hyperplasia associated with chronic inflammation to tumour initiation is vividly apparent, though inflammatory conditions in the renewing populations are also permissive for tumour induction. In the liver, hepatocytes, biliary epithelial cells and hepatic progenitor cells are embryologically related, and all can give rise to hepatocellular carcinoma and cholangiocarcinoma. In the exocrine pancreas, both acinar and ductal cells can give rise to pancreatic ductal adenocarcinoma (PDAC), although the preceding preneoplastic states are quite different: acinar-ductal metaplasia gives rise to pancreatic intraepithelial neoplasia culminating in PDAC, while ducts give rise to PDAC via. mucinous cell metaplasia that may have a polyclonal origin.
Collapse
Affiliation(s)
- Malcolm R. Alison
- Centre for Tumour BiologyBarts Cancer Institute, Charterhouse SquareBarts and The London School of Medicine and DentistryLondonUK
| |
Collapse
|