1
|
Radhakrishna U, Ratnamala U, Jhala DD, Uppala LV, Vedangi A, Saiyed N, Patel M, Vadsaria N, Shah SR, Rawal RM, Mercuri SR, McGonagle D, Jemec GBE, Damiani G. Hidradenitis suppurativa associated telomere-methylome dysregulations in blood. J Eur Acad Dermatol Venereol 2024; 38:393-403. [PMID: 37872100 DOI: 10.1111/jdv.19586] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/03/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Hidradenitis suppurativa (HS) is a chronic debilitating disease with a significant burden of both organic and psychological comorbidities. It has been shown that certain telomere-related genes (TRGs) affect a wide range of diseases, including HS and its associated comorbidities, but their exact role in HS pathogenesis is still unknown. OBJECTIVES To determine whether TRG methylomes can be used as biomarkers in HS. METHODS Using the Illumina HumanMethylation450 BeadChip array, we examined methylation variations associated with TRGs in HS cases and age-, sex- and ethnicity-matched healthy controls. The study utilized integrated bioinformatics statistical methods, such as a false discovery rate (FDR), the area under the receiver operating characteristic curve (AUC) and principal component analysis. RESULTS There were a total of 585 different differentially methylated CpG sites identified in 585 TRGs associated with HS (474 hypomethylated and 111 hypermethylated) (FDR p-value < 0.05). A number of these CpGs have been identified as being involved in increased pain sensitivity including EPAS1, AHR, CSNK1D, DNMT1, IKBKAP, NOS3, PLCB1 and PRDM16 genes; GABRB3 as a potential alcohol addiction marker; DDB1, NSMCE2 and HNRNPA2B1 associated with cancers. Pathway analysis identified 67 statistically significant pathways, including DNA repair, telomere maintenance, mismatch repair and cell cycle control (p < 0.001). CONCLUSION The disruption of TRGs leads to the shortening of telomeres, which is associated with HS progression, ageing, cellular senescence and an increased risk of various diseases, including cancer and associated comorbidities, such as metabolic syndrome, cardiovascular disease and inflammatory disorders. Further research is necessary to better understand the underlying mechanisms and establish causal links between TRGs and HS. The present study is the first effort to comprehend potential pathomechanisms of sporadic HS cases concentrating on PBMC methylome since ours.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, USA
| | - Uppala Ratnamala
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, India
| | | | - Lavanya V Uppala
- College of Information Science & Technology, Peter Kiewit Institute, the University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Aaren Vedangi
- Department of Clinical Research, KIMS ICON Hospital, A Unit of ICON Krishi Institute Medical Sciences, Visakhapatnam, India
| | - Nazia Saiyed
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, USA
| | | | | | - Sushma R Shah
- Department of Obstetrics and Gynecology, BJ Medical College Institute of Medical Post-Graduate Studies and Research, Ahmedabad, India
| | - Rakesh M Rawal
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, India
| | - Santo R Mercuri
- Unit of Dermatology and Cosmetology, IRCCS San Raffaele Hospital, Milano, Italy
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Gregor B E Jemec
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark
| | - Giovanni Damiani
- Unit of Dermatology and Cosmetology, IRCCS San Raffaele Hospital, Milano, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Italian Center of Precision Medicine and Chronic Inflammation, University of Milan, Milan, Italy
| |
Collapse
|