1
|
Ge L, Cheng K, Lu W, Cui Y, Yin X, Jiang J, Li Y, Yao H, Liao J, Xue J, Shen Q. Enzymatic Preparation, In-Depth Molecular Analysis, and In Vitro Digestion Simulation of Palmitoleic Acid (ω-7)-Enriched Fish Oil Triacylglycerols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8859-8870. [PMID: 38564481 DOI: 10.1021/acs.jafc.3c09159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In this study, an enzymatic reaction was developed for synthesizing pure triacylglycerols (TAG) with a high content of palmitoleic acid (POA) using fish byproduct oil. The characteristics of synthesized structural TAGs rich in POA (POA-TAG) were analyzed in detail through ultrahigh-performance liquid chromatography Q Exactive orbitrap mass spectrometry. Optimal conditions were thoroughly investigated and determined for reaction systems, including the use of Lipozyme TL IM and Novozym 435, 15 wt % lipase loading, substrate mass ratio of 1:3, and water content of 2.5 and 0.5 wt %, respectively, resulting in yields of 67.50 and 67.45% for POA-TAG, respectively. Multivariate statistical analysis revealed that TAG 16:1/16:1/20:4, TAG 16:1/16:1/16:1, TAG 16:1/16:1/18:1, and TAG 16:0/16:1/18:1 were the main variables in Lipozyme TL IM and Novozym 435 enzyme-catalyzed products under different water content conditions. Finally, the fate of POA-TAG across the gastrointestinal tract was simulated using an in vitro digestion model. The results showed that the maximum release of free fatty acids and apparent rate constants were 71.44% and 0.0347 s-1, respectively, for POA-TAG lipids, and the physical and structural characteristics during digestion depended on their microenvironments. These findings provide a theoretical basis for studying the rational design of POA-structural lipids and exploring the nutritional and functional benefits of POA products.
Collapse
Affiliation(s)
- Lijun Ge
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Keyun Cheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Weibo Lu
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yiwei Cui
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xuelian Yin
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jianjun Jiang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 318020, China
| | - Yijing Li
- Department of Cardiology, Ningbo Ninth Hospital, Ningbo 315020, China
| | - Haiming Yao
- Yunhe Street Community Health Service Center, Linping, Hangzhou 311100, China
| | - Jie Liao
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Xue
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Qing Shen
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| |
Collapse
|
2
|
Nor Mahiran SNS, Abd Kadir NH, Maulidiani M, Tengku Mohamad TR, Gooderham NJ, Alam M. Multivariate modelling analysis for prediction of glycidyl esters and 3-monochloropropane-1,2-diol (3-MCPD) formation in periodically heated palm oil. Heliyon 2023; 9:e20413. [PMID: 37780749 PMCID: PMC10539964 DOI: 10.1016/j.heliyon.2023.e20413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/08/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023] Open
Abstract
Palm oil is a vegetable oil that is widely used for cooking and deep-frying because of its affordability. However, repeatedly heated palm oil is also prone to oxidation due to its significant content of unsaturated fatty acids and other chemical toxicants such as glycidyl esters and 3-monochloropropane-1,2-diol (3-MCPD). Initially, the physicochemical properties such as colour, viscosity, peroxide, p-anisidine and total oxidation (TOTOX) of periodically heated palm oil were investigated. Chemical profiling and fingerprinting of six different brands of palm cooking oil during heating cycles between 90 and 360 min were conducted using Fourier transform infrared (FTIR) and 1H Nuclear Magnetic Resonance (NMR) metabolomics. In addition, the multivariate analysis was employed to evaluate the 1H NMR spectroscopic pattern of repeatedly heated palm oil with the corresponding physicochemical properties. The FTIR metabolomics showed significant different of the chemical fingerprinting subjected to heating duration, which in agreement with the result of 1H NMR metabolomics. Partial least squares (PLS) model revealed that most of the physicochemical properties of periodically heated palm oil are positively correlated (R2 values of 0.98-0.99) to their spectroscopic pattern. Based on the findings, the color of the oils darkened with increased heating time. The peroxide value (PV), p-anisidine value (p-AnV), and total oxidation (TOTOX) values increased significantly due to degradation of unsaturated compounds and oxidation products formed. We identified targeted metabolites (probable carcinogens) such as 3-monochloropropane-1,2-diol (3-MCPD) and glycidyl ester (GE), indicating the conversion of 3-MCPD to GE in repeatedly heated oils based on PCA and OPLSDA models. Our correlation analysis of NMR and physicochemical properties has shown that the conversion of 3-MCPD to GE was significantly increased from 180 to 360 min cooking time. The combination spectroscopic techniques with physicochemical properties are a reliable and robust methods to evaluate the characteristics, stability and chemical's structure changes of periodically heated palm oil, which may contribute to probable carcinogens development. This study has proven that combination of NMR and physicochemical analysis may predict the formation of the probable carcinogens of heated cooking oil over time which emphasizing the need to avoid certain heating cycles to mitigate formation of probable carcinogens during cooking process.
Collapse
Affiliation(s)
| | - Nurul Huda Abd Kadir
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Malaysia
| | | | | | - Nigel J. Gooderham
- Department of Metabolism, Digestion, Reproduction, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom
| | - Mahboob Alam
- Department of Safety Engineering, Dongguk University, 123 Dongdae-ro, Gyeongju-si, Gyeongbuk, 780714, South Korea
| |
Collapse
|
3
|
Chaula D, Jacobsen C, Laswai HS, Chove BE, Dalsgaard A, Mdegela R, Hyldig G. Changes in fatty acids during storage of artisanal-processed freshwater sardines ( Rastrineobola argentea). Food Sci Nutr 2023; 11:3040-3047. [PMID: 37324847 PMCID: PMC10261779 DOI: 10.1002/fsn3.3284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
For ages, indigenous small fish species have been important in food and nutritional security of poor communities in low income countries. Freshwater fish, in particular fatty fish species are attracting a great attention because they are good sources of health promoting long chain omega-3 fatty acids. Docosahexaenoic acid (DHA, C22:6n-3), Docosapentaenoic acid (DPA, C22:5n-3) and eicosapentaenoic acid (EPA, C20:5n-3) are the main omega-3 PUFAs known to confer health benefits in humans if consumed in required amounts. While nutritionally valued, omega-3 PUFAs in fish are susceptible to oxidative damage during processing, transportation and subsequent storage. Lake Victoria sardines (Rastrineobola argentea), are rich source of chemically unstable omega-3 fatty acids DHA, DPA and EPA. Traditionally, sardines are preserved by sun drying, deep frying and smoking. Sardine products are transported, stored and marketed at ambient temperatures. Generally, uncontrolled and higher temperatures are known to increase vulnerability of polyunsaturated fatty acids to oxidation which in turn results into loss of nutritional and sensory qualities. This study investigated changes of fat acids in sun dried, deep fried and smoked sardines during storage. Lipolysis and the progressive hydroperoxides formation were monitored by free fatty acids (FFAs) and peroxide value (PV) respectively. None volatile secondary products of lipid oxidation were measured by thiobabituric acid reactive substances (TBARS). Fatty acids were analyzed by gas chromatography with a flameionization detector (GC-FID). Deep fried sardines maintained the lowest and apparently stable PV, TBARS and FFAs. Proportions of saturated fatty acids and polyunsaturated fatty acids decreased with time while that of monounsaturated fatty acids increased. Omega-3 fatty acids EPA, DPA and DHA decreased with increase in storage time. In 21 days of storage, DHA was oxidized beyond detectable levels in all sardine products. Gradual increase in FFAs in sun dried sardines was suggestive of lipid hydrolysis induced by enzymes.
Collapse
Affiliation(s)
- Davis Chaula
- Department of Food Sciences and Agro-Processing Sokoine University of Agriculture Morogoro Tanzania
| | - Charlotte Jacobsen
- National Food Institute, Division for Food Technology Technical University of Denmark Lyngby Denmark
| | - Henry S Laswai
- Department of Food Sciences and Agro-Processing Sokoine University of Agriculture Morogoro Tanzania
| | - Bernard Elias Chove
- Department of Food Sciences and Agro-Processing Sokoine University of Agriculture Morogoro Tanzania
| | - Anders Dalsgaard
- Faculty of Health and Medical Sciences, Section of Food Safety and Zoonoses, Department of Veterinary and Animal Sciences University of Copenhagen Frederiksberg C Denmark
| | - Robinson Mdegela
- College of Veterinary and Medical Sciences, Department of Veterinary Medicine and Public Health Sokoine University of Agriculture Morogoro Tanzania
| | - Grethe Hyldig
- National Food Institute, Division for Food Technology Technical University of Denmark Lyngby Denmark
| |
Collapse
|
4
|
Preparation of Human Milk Fat Substitutes: A Review. Life (Basel) 2022; 12:life12020187. [PMID: 35207476 PMCID: PMC8874823 DOI: 10.3390/life12020187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Human milk is generally regarded as the best choice for infant feeding. Human milk fat (HMF) is one of the most complex natural lipids, with a unique fatty acid composition and distribution and complex lipid composition. Lipid intake in infants not only affects their energy intake but also affects their metabolic mode and overall development. Infant formula is the best substitute for human milk when breastfeeding is not possible. As the main energy source in infant formula, human milk fat substitutes (HMFSs) should have a composition similar to that of HMF in order to meet the nutritional needs of infant growth and development. At present, HMFS preparation mainly focuses on the simulation of fatty acid composition, the application of structured lipids and the addition of milk fat globule membrane (MFGM) supplements. This paper first reviews the composition and structure of HMF, and then the preparation development of structured lipids and MFGM supplements are summarized. Additionally, the evaluation and regulation of HMFSs in infant formula are also presented.
Collapse
|
5
|
Phung AS, Bannenberg G, Vigor C, Reversat G, Oger C, Roumain M, Galano JM, Durand T, Muccioli GG, Ismail A, Wang SC. Chemical Compositional Changes in Over-Oxidized Fish Oils. Foods 2020; 9:foods9101501. [PMID: 33092165 PMCID: PMC7590219 DOI: 10.3390/foods9101501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
A recent study has reported that the administration during gestation of a highly rancid hoki liver oil, obtained by oxidation through sustained exposure to oxygen gas and incident light for 30 days, causes newborn mortality in rats. This effect was attributed to lipid hydroperoxides formed in the omega-3 long-chain polyunsaturated fatty acid-rich oil, while other chemical changes in the damaged oil were overlooked. In the present study, the oxidation condition employed to damage the hoki liver oil was replicated, and the extreme rancidity was confirmed. A detailed analysis of temporal chemical changes resulting from the sustained oxidative challenge involved measures of eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA) omega-3 oil oxidative quality (peroxide value, para-anisidine value, total oxidation number, acid value, oligomers, antioxidant content, and induction time) as well as changes in fatty acid content, volatiles, isoprostanoids, and oxysterols. The chemical description was extended to refined anchovy oil, which is a more representative ingredient oil used in omega-3 finished products. The present study also analyzed the effects of a different oxidation method involving thermal exposure in the dark in contact with air, which is an oxidation condition that is more relevant to retail products. The two oils had different susceptibility to the oxidation conditions, resulting in distinct chemical oxidation signatures that were determined primarily by antioxidant protection as well as specific methodological aspects of the applied oxidative conditions. Unique isoprostanoids and oxysterols were formed in the over-oxidized fish oils, which are discussed in light of their potential biological activities.
Collapse
Affiliation(s)
- Austin S. Phung
- Department of Chemistry, University of California, Davis, CA 95616, USA;
| | - Gerard Bannenberg
- Global Organization for EPA and DHA Omega-3s (GOED), Salt Lake City, UT 84105, USA;
- Correspondence: (G.B.); (S.C.W.)
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Martin Roumain
- Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (M.R.); (G.G.M.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Giulio G. Muccioli
- Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (M.R.); (G.G.M.)
| | - Adam Ismail
- Global Organization for EPA and DHA Omega-3s (GOED), Salt Lake City, UT 84105, USA;
| | - Selina C. Wang
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
- Correspondence: (G.B.); (S.C.W.)
| |
Collapse
|
6
|
Wang F, Lin W, Lv S, Jiang S, Lin L, Lu J. Comparison of Lipids Extracted by Different Methods from Chinese Mitten Crab (Eriocheir sinensis) Hepatopancreas. J Food Sci 2019; 84:3594-3600. [PMID: 31762029 DOI: 10.1111/1750-3841.14946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 11/30/2022]
Abstract
The effects of four different extraction methods (Folch, Soxhlet, two-step, and enzyme-assisted aqueous extraction) on the yields, lipid class, fatty acids (FAs) composition, minor components (including carotenoid, cholesterol), and thiobarbituric acid reactive substances values of lipids in the hepatopancreas of Chinese mitten crab (Eriocheir sinensis) were investigated. The C16:0, C18:1, and C18:2 were identified to be the dominant FAs in crab lipids, and the FAs were present in the form of triglycerides. The Soxhlet and enzyme-assisted extraction were more suitable for crab lipids extraction, showing higher extraction rates and oxidative stability. Especially, the lipid extracted by enzyme-assisted extraction has high carotenoids content. The components of crab lipids extracted by enzyme-assisted aqueous extraction were further identified using untargeted metabolomics methods. The polyunsaturated fatty acid, sterols, amino acids, products of lipid β-oxidation and ATP degradation, phosphatidyl ethanolamine, and astaxanthin were founded in crab oil. PRACTICAL APPLICATION: The Chinese mitten crab (Eriocheir sinensis) is a popular aquatic food in China. The hepatopancreas is the major lipid storage organ of crab, and the distinctive flavor of crab is mainly from it. To compare the different extraction methods on yield, composition and properties of crab lipids can be helpful for lipids production from crab hepatopancreas. Meanwhile, the crab hepatopancreas lipids are rich in polyunsaturated fatty acids and astaxanthin, and have potential to be as a functional component and a crab flavor additive in food industry.
Collapse
Affiliation(s)
- Fengya Wang
- School of Food and Biological Engineering, Hefei Univ. of Technology, 193 Tunxi Rd, Hefei, 230009, Anhui, China.,Key Lab of Separation Science for Analytical Chemistry, Dalian Inst. of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, PR China
| | - Wei Lin
- College of Food and Bioengineering, Qiqihar Univ., Qiqihar, 161006, Heilongjiang, China
| | - Shun Lv
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei Univ. of Technology, 193 Tunxi Rd, Hefei, 230009, Anhui, China
| | - Shaotong Jiang
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei Univ. of Technology, 193 Tunxi Rd, Hefei, 230009, Anhui, China
| | - Lin Lin
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei Univ. of Technology, 193 Tunxi Rd, Hefei, 230009, Anhui, China
| | - Jianfeng Lu
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei Univ. of Technology, 193 Tunxi Rd, Hefei, 230009, Anhui, China
| |
Collapse
|
7
|
Tengku‐Rozaina TM, Birch EJ. Effects of Low Temperature Solvent Fractionation on the Thermal Oxidative Stability and Antioxidant Activity of Refined Hoki Oil and its Derived Fractions. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tengku Mohamad Tengku‐Rozaina
- School of Food Science and Technology, Universiti Malaysia Terengganu21030 Kuala NerusTerengganuMalaysia
- Department of Food Science, University of OtagoPO Box 56Dunedin 9054New Zealand
| | - Edward John Birch
- Department of Food Science, University of OtagoPO Box 56Dunedin 9054New Zealand
| |
Collapse
|
8
|
Tengku‐Rozaina TM, Birch EJ. Thermal oxidative stability analysis of hoki and tuna oils by Differential Scanning Calorimetry and Thermogravimetry. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tengku Mohamad Tengku‐Rozaina
- School of Food Science and TechnologyUniversiti Malaysia TerengganuKuala TerengganuTerengganuMalaysia
- Department of Food ScienceUniversity of OtagoDunedinNew Zealand
| | | |
Collapse
|