1
|
Mendoza IC, Luna EO, Pozo MD, Vásquez MV, Montoya DC, Moran GC, Romero LG, Yépez X, Salazar R, Romero-Peña M, León JC. Conventional and non-conventional disinfection methods to prevent microbial contamination in minimally processed fruits and vegetables. Lebensm Wiss Technol 2022; 165:113714. [PMID: 35783661 PMCID: PMC9239846 DOI: 10.1016/j.lwt.2022.113714] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 12/22/2022]
Abstract
Pandemic COVID-19 warned the importance of preparing the immune system to prevent diseases. Therefore, consuming fresh fruits and vegetables is essential for a healthy and balanced diet due to their diverse compositions of vitamins, minerals, fiber, and bioactive compounds. However, these fresh products grew close to manure and irrigation water and are harvested with equipment or by hand, representing a high risk of microbial, physical, and chemical contamination. The handling of fruits and vegetables exposed them to various wet surfaces of equipment and utensils, an ideal environment for biofilm formation and a potential risk for microbial contamination and foodborne illnesses. In this sense, this review presents an overview of the main problems associated with microbial contamination and the several chemicals, physical, and biological disinfection methods concerning their ability to avoid food contamination. This work has discussed using chemical products such as chlorine compounds, peroxyacetic acid, and quaternary ammonium compounds. Moreover, newer techniques including ozone, electrolyzed water, ultraviolet light, ultrasound, high hydrostatic pressure, cold plasma technology, and microbial surfactants have also been illustrated here. Finally, future trends in disinfection with a sustainable approach such as combined methods were also described. Therefore, the fruit and vegetable industries can be informed about their main microbial risks to establish optimal and efficient procedures to ensure food safety.
Collapse
Affiliation(s)
- Iana Cruz Mendoza
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Esther Ortiz Luna
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - María Dreher Pozo
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Mirian Villavicencio Vásquez
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Diana Coello Montoya
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Galo Chuchuca Moran
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Luis Galarza Romero
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Ximena Yépez
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Rómulo Salazar
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - María Romero-Peña
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Jonathan Coronel León
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
2
|
|
3
|
Nguyen T, Palmer J, Loo T, Shilton A, Petcu M, Newson HL, Flint S. Investigation of UV light treatment (254 nm) on the reduction of aflatoxin M1 in skim milk and degradation products after treatment. Food Chem 2022; 390:133165. [PMID: 35561509 DOI: 10.1016/j.foodchem.2022.133165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/20/2022] [Accepted: 05/03/2022] [Indexed: 11/04/2022]
Abstract
This study investigates the reduction of aflatoxin M1 (AFM1) in skim milk by using ultraviolet light at 254 nm and the effects of influencing factors on the efficacy including treatment time (min), depth of samples (mm), contamination level (μg L-1), stirring, temperature, and fat content in milk. The colour and pH of milk samples were measured to evaluate the influence of the treatment on these values. It was found that short-wave ultraviolet radiation (UVC) reduced up to 50% of AFM1 in milk after 20 min of treatment regardless of the initial AFM1 contamination level. Treatment time, depth of samples, and stirring were all found to significantly (P < 0.05) enhance the reduction of AFM1. The milk colour was affected but there was no influence on the pH of milk samples at any duration of UV exposure. It is concluded that UVC light treatment has the potential to reduce AFM1 in milk.
Collapse
Affiliation(s)
- Thu Nguyen
- School of Food and Advanced Technology, Massey University, New Zealand.
| | - Jon Palmer
- School of Food and Advanced Technology, Massey University, New Zealand
| | - Trevor Loo
- School of Fundamental Sciences, Massey University, New Zealand
| | - Andrew Shilton
- School of Food and Advanced Technology, Massey University, New Zealand
| | | | | | - Steve Flint
- School of Food and Advanced Technology, Massey University, New Zealand
| |
Collapse
|
4
|
Evaluation of ultraviolet irradiation effects on Aspergillus flavus and Aflatoxin B1 in maize and peanut using innovative vibrating decontamination equipment. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Babaee R, Karami-Osboo R, Mirabolfathy M. Evaluation of the use of Ozone, UV-C and Citric acid in reducing aflatoxins in pistachio nut. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Ghafari N, Paimard G, Sadeghi E, Choobkar N, Lalabadi M. Evaluation of nano-silica, microwave heating, and ultraviolet irradiation effects on zearalenone detoxification in sunflower oils. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present study, we report three methods of silica nanoparticles (SNPs) as adsorbent, ultraviolet (UV) irradiation, and microwave heating and evaluate their capabilities in reducing and eliminating zearalenone (ZEN). The offered method not only was used for ZEN detoxification, but also greatly enhanced the sensitivity of ZEN measurement. The aim of this study was to evaluate ZEN concentration in sunflower oil samples by high-performance liquid chromatography (HPLC) method. This method was successfully validated for sunflower oil samples while the limit of detection (LOD) method (signal-to-noise ratio of 3:1) was 0.5 μg/l. The acquired removal data with the HPLC method through SNPs were fitted well with Freundlich isotherm, denoting that the multi-layer adsorption took place on the adsorbent. The equilibrium adsorption capacity of ZEN was 61.02 μg/g in an optimum time of 240 min on SNPs. The experimental results were evaluated by the adsorption kinetic model, which specified the adsorption kinetics of ZEN on SNPs, obeying the pseudo-second order model. This model demonstrated that the sorption rate depended on the sorption capacity but not the concentration of the sorbate. Moreover, the method presented to determine ZEN based on the use of SNPs in sunflower oil was accomplished by the adsorption process. Furthermore, the removal efficiencies of ZEN by SNPs, UV irradiation, and microwave heating were compared and obtained to be 92.1, 96.22, and 37.30%, respectively for determined times. These results confirm the removal efficiency of these methods is sensitive enough to ZEN analysis in sunflower oil samples.
Collapse
Affiliation(s)
- N. Ghafari
- Department of Food Science and Technology, Faculty of Agriculture, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - G. Paimard
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - E. Sadeghi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - N. Choobkar
- Department of Fisheries, Faculty of Agriculture, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - M.A. Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Li Y, Wang R, Luo X, Chen Z, Wang L, Zhou Y, Liu W, Cheng M, Zhang C. Synthesis of Rice Husk-Based MCM-41 for Removal of Aflatoxin B1 from Peanut Oil. Toxins (Basel) 2022; 14:toxins14020087. [PMID: 35202115 PMCID: PMC8876307 DOI: 10.3390/toxins14020087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/09/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Edible oils, especially peanut oil, usually contain aflatoxin B1 (AFB1) at extremely high concentrations. This study focused on the synthesis of rice husk-based mesoporous silica (MCM-41) for the removal of AFB1 from peanut oil. MCM-41 was characterized by X-ray diffraction, N2 physisorption, and transmission electron microscope. MCM-41 was shown to have ordered channels with high specific surface area (1246 m2/g), pore volume (1.75 cm3/g), and pore diameter (3.11 nm). Under the optimal concentration of 1.0 mg/mL of the adsorbent dose, the adsorption behavior of MCM-41, natural montmorillonite (MONT), and commercial activated carbon (CA) for AFB1 were compared. The adsorption of AFB1 in peanut oil onto the three adsorbents was slower compared to that of AFB1 in an aqueous solution. In addition, the pseudo-second-order kinetic model better fit the adsorption kinetics of AFB1, while the adsorption mechanism followed the Langmuir adsorption isotherm on the three adsorbents. The calculated maximum adsorbed amounts of AFB1 on MONT, MCM-41, and CA were 199.41, 215.93, and 248.93 ng/mg, respectively. These results suggested that MCM-41 without modification could meet market demand and could be considered a good candidate for the removal of AFB1 from peanut oil. This study provides insights that could prove to be of economic and practical value.
Collapse
Affiliation(s)
- Ya’nan Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (Y.L.); (Z.C.)
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (R.W.); (X.L.); (W.L.); (M.C.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Ren Wang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (R.W.); (X.L.); (W.L.); (M.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Xiaohu Luo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (R.W.); (X.L.); (W.L.); (M.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Zhengxing Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (Y.L.); (Z.C.)
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (R.W.); (X.L.); (W.L.); (M.C.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Yunyu Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (R.W.); (X.L.); (W.L.); (M.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- Wuxi Zodolabs Biotech Co., Ltd., Wuxi 214174, China
- Correspondence:
| | - Weizhi Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (R.W.); (X.L.); (W.L.); (M.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Miaomiao Cheng
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (R.W.); (X.L.); (W.L.); (M.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Chen Zhang
- Wuxi Xinwu Environmental Protection Technology Co., Ltd., Wuxi 214028, China;
| |
Collapse
|
8
|
Kurup AH, Patras A, Pendyala B, Vergne MJ, Bansode RR. Evaluation of Ultraviolet-Light (UV-A) Emitting Diodes Technology on the Reduction of Spiked Aflatoxin B1 and Aflatoxin M1 in Whole Milk. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02731-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
The mycotoxins in edible oils: An overview of prevalence, concentration, toxicity, detection and decontamination techniques. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Blocking and degradation of aflatoxins by cold plasma treatments: Applications and mechanisms. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
He J, Evans NM, Liu H, Zhu Y, Zhou T, Shao S. UV treatment for degradation of chemical contaminants in food: A review. Compr Rev Food Sci Food Saf 2021; 20:1857-1886. [PMID: 33486857 DOI: 10.1111/1541-4337.12698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022]
Abstract
Application of ultraviolet (UV) irradiation for the degradation of chemical contaminants in food products has gained more and more interest in the past two decades. The majority of the research in this field was on mycotoxins, especially aflatoxins and patulin, with limited studies on pesticide residues and other chemical contaminants in food. These studies have been focused on identifying the structure and toxicity of degradation products, investigating the influence of UV treatment factors on the degradation efficiency, determining the impact of UV treatment on the quality of food products, and developing updated UV treatment methods such as TiO2 induced photocatalytic degradation. The summary of published literatures provided insights into future research opportunities in this area, which include determining a standard for the UV treatment description, working with naturally contaminated samples rather than artificially spiked samples, conducting pilot plant or industrial scale studies, examining more targets and conducting multi-targets studies, and developing more innovative methods for UV treatment.
Collapse
Affiliation(s)
- Jiang He
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,College of Life and Environmental Science, Hunan University of Arts and Science, Changde, Hunan, China
| | - Natasha Marie Evans
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Huaizhi Liu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Yan Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Suqin Shao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|
12
|
Preventive Measures and Control of Mycotoxins. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Deng LZ, Tao Y, Mujumdar AS, Pan Z, Chen C, Yang XH, Liu ZL, Wang H, Xiao HW. Recent advances in non-thermal decontamination technologies for microorganisms and mycotoxins in low-moisture foods. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Guo Y, Zhao L, Ma Q, Ji C. Novel strategies for degradation of aflatoxins in food and feed: A review. Food Res Int 2020; 140:109878. [PMID: 33648196 DOI: 10.1016/j.foodres.2020.109878] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
Aflatoxins are toxic secondary metabolites mainly produced by Aspergillus fungi, posing high carcinogenic potency in humans and animals. Dietary exposure to aflatoxins is a global problem in both developed and developing countries especially where there is poor regulation of their levels in food and feed. Thus, academics have been striving over the decades to develop effective strategies for degrading aflatoxins in food and feed. These strategies are technologically diverse and based on physical, chemical, or biological principles. This review summarizes the recent progress on novel aflatoxin degradation strategies including irradiation, cold plasma, ozone, electrolyzed oxidizing water, organic acids, natural plant extracts, microorganisms and enzymes. A clear understanding of the detoxification efficiency, mechanism of action, degradation products, application potential and current limitations of these methods is presented. In addition, the development and future perspective of nanozymes in aflatoxins degradation are introduced.
Collapse
Affiliation(s)
- Yongpeng Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
15
|
Javanmardi F, Khodaei D, Sheidaei Z, Bashiry M, Nayebzadeh K, Vasseghian Y, Mousavi Khaneghah A. Decontamination of Aflatoxins in Edible Oils: A Comprehensive Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1812635] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Fardin Javanmardi
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Diako Khodaei
- Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Zhaleh Sheidaei
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Bashiry
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kooshan Nayebzadeh
- Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasser Vasseghian
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
16
|
Ferreira CD, Lang GH, Lindemann IDS, Timm NDS, Hoffmann JF, Ziegler V, de Oliveira M. Postharvest UV-C irradiation for fungal control and reduction of mycotoxins in brown, black, and red rice during long-term storage. Food Chem 2020; 339:127810. [PMID: 32871301 DOI: 10.1016/j.foodchem.2020.127810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/27/2020] [Accepted: 08/08/2020] [Indexed: 12/20/2022]
Abstract
The formation of fungal colonies, mycotoxins, phenolic compounds, cooking quality and color properties were evaluated in freshly-harvested brown, black, and red rice grains and then subjected to ultraviolet radiation (UV-C) for 1 and 3 h. Assessments were made after 6 months of storage. The exposure of black and red rice at 1 h of UV-C was enough to decrease the presence of fungal colonies by 22% and 79%, respectively, without any changes in cooking and coloring properties. In brown rice, only 3 h of UV-C irradiation was able to reduce the formation of fungal colonies. The release of phenolic compounds associated with cell wall was observed only in black and red rice subjected to UV-C radiation. The levels of mycotoxins gradually decreased with the increase in the time of exposure to UV-C radiation, demonstrating UV-C irradiation to be an effective method in fungal control and reduction of mycotoxins in stored rice.
Collapse
Affiliation(s)
- Cristiano Dietrich Ferreira
- Technological Institute in Food for Health, University of Vale do Rio dos Sinos, 93022-750 São Leopoldo, RS, Brazil.
| | - Gustavo Heinrich Lang
- Department of Food Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, RS, Brazil.
| | - Igor da Silva Lindemann
- Department of Food Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, RS, Brazil.
| | - Newiton da Silva Timm
- Department of Food Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, RS, Brazil; Rural Sciences Center, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| | - Jessica Fernanda Hoffmann
- Technological Institute in Food for Health, University of Vale do Rio dos Sinos, 93022-750 São Leopoldo, RS, Brazil.
| | - Valmor Ziegler
- Technological Institute in Food for Health, University of Vale do Rio dos Sinos, 93022-750 São Leopoldo, RS, Brazil.
| | - Maurício de Oliveira
- Department of Food Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, RS, Brazil; Plant Science Department, Rothamsted Research, Harpenden, United Kingdom.
| |
Collapse
|
17
|
Stanley J, Patras A, Pendyala B, Vergne MJ, Bansode RR. Performance of a UV-A LED system for degradation of aflatoxins B 1 and M 1 in pure water : kinetics and cytotoxicity study. Sci Rep 2020; 10:13473. [PMID: 32778713 PMCID: PMC7417570 DOI: 10.1038/s41598-020-70370-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/22/2020] [Indexed: 01/02/2023] Open
Abstract
The efficacy of a UV-A light emitting diode system (LED) to reduce the concentrations of aflatoxin B1, aflatoxin M1 (AFB1, AFM1) in pure water was studied. This work investigates and reveals the kinetics and main mechanism(s) responsible for the destruction of aflatoxins in pure water and assesses the cytotoxicity in liver hepatocellular cells. Irradiation experiments were conducted using an LED system operating at 365 nm (monochromatic wave-length). Known concentrations of aflatoxins were spiked in water and irradiated at UV-A doses ranging from 0 to 1,200 mJ/cm2. The concentration of AFB1 and AFM1 was determined by HPLC with fluorescence detection. LC–MS/MS product ion scans were used to identify and semi-quantify degraded products of AFB1 and AFM1. It was observed that UV-A irradiation significantly reduced aflatoxins in pure water. In comparison to control, at dose of 1,200 mJ/cm2 UV-A irradiation reduced AFB1 and AFM1 concentrations by 70 ± 0.27 and 84 ± 1.95%, respectively. We hypothesize that the formation of reactive species initiated by UV-A light may have caused photolysis of AFB1 and AFM1 molecules in water. In cell culture studies, our results demonstrated that the increase of UV-A dosage decreased the aflatoxins-induced cytotoxicity in HepG2 cells, and no significant aflatoxin-induced cytotoxicity was observed at UV-A dose of 1,200 mJ/cm2. Further results from this study will be used to compare aflatoxins detoxification kinetics and mechanisms involved in liquid foods such as milk and vegetable oils.
Collapse
Affiliation(s)
- Judy Stanley
- Food Biosciences and Technology Program, Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, 37209, USA
| | - Ankit Patras
- Food Biosciences and Technology Program, Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, 37209, USA.
| | - Brahmaiah Pendyala
- Food Biosciences and Technology Program, Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, 37209, USA.
| | - Matthew J Vergne
- Department of Pharmaceutical Sciences, Department of Chemistry and Biochemistry, Lipscomb University, Nashville, TN, 37204, USA
| | - Rishipal R Bansode
- Center for Excellence in Post-Harvest Technologies, North Carolina Research Campus, North Carolina Agricultural and Technical State University, Kannapolis, 28081, NC, USA
| |
Collapse
|
18
|
Zavala-Franco A, Arámbula-Villa G, Ramírez-Noguera P, Salazar AM, Sordo M, Marroquín-Cardona A, Figueroa-Cárdenas JDD, Méndez-Albores A. Aflatoxin detoxification in tortillas using an infrared radiation thermo-alkaline process: Cytotoxic and genotoxic evaluation. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Magzoub R, Yassin A, Abdel-Rahim A, Gubartallah E, Miskam M, Saad B, Sabar S. Photocatalytic detoxification of aflatoxins in Sudanese peanut oil using immobilized titanium dioxide. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Ismail A, Gonçalves BL, de Neeff DV, Ponzilacqua B, Coppa CFSC, Hintzsche H, Sajid M, Cruz AG, Corassin CH, Oliveira CAF. Aflatoxin in foodstuffs: Occurrence and recent advances in decontamination. Food Res Int 2018; 113:74-85. [PMID: 30195548 DOI: 10.1016/j.foodres.2018.06.067] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 01/08/2023]
Abstract
Aflatoxins are highly toxic compounds produced as secondary metabolites by some Aspergillus species, whose occurrence have been reported predominantly in several types of foods of low moisture content, while aflatoxin biotransformation products have been reported mainly in milk and milk products. This review deals with the occurrence of aflatoxins in some of the major food products in the last 5 years including regulatory aspects, and recent advances in detoxification strategies for contaminated foods. Aflatoxin contamination in cereals including corn and peanut is still a public health problem for some populations, especially in African countries. Despite that most of physical and chemical methods for aflatoxin detoxification may affect the nutritional properties of food, or are not safe for human consumption, gamma-radiation and ozone applications have demonstrated great potential for detoxification of aflatoxins in some food matrices. Biological methods based on removal or degradation of aflatoxins by bacterial and yeast have good perspectives, although further studies are needed to clarify the detoxification mechanisms by microorganisms and determine practical aspects of the use of these methods in food products, especially their potential effects on sensory characteristics of foods.
Collapse
Affiliation(s)
- Amir Ismail
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Bruna L Gonçalves
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP, Pirassununga, SP 13635-900, Brazil
| | - Diane V de Neeff
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP, Pirassununga, SP 13635-900, Brazil
| | - Bárbara Ponzilacqua
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP, Pirassununga, SP 13635-900, Brazil
| | - Carolina F S C Coppa
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP, Pirassununga, SP 13635-900, Brazil
| | - Henning Hintzsche
- Institute of Pharmacology and Toxicology, University of Würzburg, Germany; Bavarian Health and Food Safety Authority, Eggenreuther Weg 43, Erlangen 91058, Germany
| | - Muhammad Sajid
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Adriano G Cruz
- Science and Technology of Rio de Janeiro, Department of Food Science, Federal Institute of Education, Rio de Janeiro, RJ, Brazil
| | - Carlos H Corassin
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP, Pirassununga, SP 13635-900, Brazil
| | - Carlos A F Oliveira
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP, Pirassununga, SP 13635-900, Brazil.
| |
Collapse
|
21
|
Diao E, Chu X, Hou H, Dong H, Gao D. Improving the safety of apple juice by UV irradiation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9815-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Abstract
Aflatoxins are widely recognised as important natural contaminants of a wide range of foods, including maize and peanuts (groundnuts), which form part of the staple diet in many countries of the developing world, especially in Africa. There is a frequent misconception based on solubility considerations and developed market surveys that aflatoxins do not occur in peanut oil. Thus, the use of peanut oil in human food is frequently overlooked as a source of aflatoxin exposure, yet artisanal oil extraction from contaminated peanuts in local facilities in the developing world results in carryover of these mycotoxins into the oil. Consequently, these peanut oils can have high contamination levels. This review highlights food safety concerns and addresses inter alia the analytical adaptations required to determine the polar aflatoxins in peanut oil. The determination of aflatoxins in peanut oil was first achieved by thin-layer chromatography, which was later mostly superseded by high-performance liquid chromatography (HPLC) with fluorescence detection, or later, by mass spectrometric detection. More recently, a specially modified HPLC method with immunoaffinity column clean-up and fluorescence detection has achieved official method status at AOAC International. In addition, the review deals with toxicology, occurrence and detoxification of contaminated oil. Although various methods have been reported for detoxification of peanut oil, the toxicity of degradation products, the removal of beneficial constituents and the effect on its organoleptic properties need to be considered. This review is intended to draw attention to this often overlooked area of food safety.
Collapse
Affiliation(s)
- G.S. Shephard
- Mycotoxicology and Chemoprevention Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
| |
Collapse
|
23
|
Chen Q, Yang M, Yang X, Li H, Guo Z, Rahma MH. A large Raman scattering cross-section molecular embedded SERS aptasensor for ultrasensitive Aflatoxin B1 detection using CS-Fe 3O 4 for signal enrichment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 189:147-153. [PMID: 28806700 DOI: 10.1016/j.saa.2017.08.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 08/02/2017] [Accepted: 08/09/2017] [Indexed: 05/25/2023]
Abstract
With growing concern on oil safety problems, developing a simple and sensitive method to detect Aflatoxin B1 (AFB1), a common mycotoxin in peanut oil, is very necessary. In this study, Surface-enhanced Raman Scattering (SERS) aptasensor was developed for ultrasensitive AFB1 detection using the amino-terminal AFB1 aptamer (NH2-DNA1); and thiol-terminal AFB1 complementary aptamer (SH-DNA2) conjugated magnetic-beads (CS-Fe3O4) as enrichment nanoprobe and AuNR@DNTB@Ag nanorods (ADANRs) as reporter nanoprobe respectively. 5,5'-Dithiobis(2-nitrobenzoicacid) (DNTB) with large Raman scattering cross-section and no fluorescence interference was embedded in Au and Ag core/shell nanorods as Raman reporter molecules. CS-Fe3O4 possessed excellent biocompatibility and superparamagnetism for rapid signal enrichment. Therefore, NH2-DNA1-CS-Fe3O4 and SH-DNA2-ADANRs were fabricated via the hybrid reaction between aptamers and complementary aptamers. When there is AFB1, AFB1 would competitively combine with the NH2-DNA1-CS-Fe3O4 inducing the dissociation of SH-DNA2-ADANRs from CS-Fe3O4 and further decreasing the SERS signal. Based on this developed SERS aptasensor, a low limit of 0.0036ng/mL and an effective linear detection range from 0.01 to 100ng/mL with the correlation coefficient up to 0.986 for AFB1 detection were obtained. Moreover, the specificity of this SERS aptasensor was demonstrated by detecting other two mycotoxins and its accuracy for AFB1 detection in real peanut oil was further confirmed by standard addition recovery test.
Collapse
Affiliation(s)
- Quansheng Chen
- School of Food and Biological engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Mingxiu Yang
- School of Food and Biological engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaojing Yang
- School of Food and Biological engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huanhuan Li
- School of Food and Biological engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhiming Guo
- School of Food and Biological engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - M H Rahma
- School of Food and Biological engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
24
|
Pankaj S, Shi H, Keener KM. A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.11.007] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Study on inactivation mechanisms of Listeria grayi
affected by pulse magnetic field via morphological structure, Ca2+
transmembrane transport and proteomic analysis. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
26
|
Subramanian V, Shanmugam N, Ranganathan K, Kumar S, Reddy R. Effect of combination processing on aflatoxin reduction: process optimization by response surface methodology. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Vijayalakshmi Subramanian
- Food Engineering and Packaging Division, Defence Food Research Laboratory; Siddhartha Nagar; Mysore 570011 India
| | - Nadanasabapathi Shanmugam
- Food Engineering and Packaging Division, Defence Food Research Laboratory; Siddhartha Nagar; Mysore 570011 India
| | - Kumar Ranganathan
- Food Engineering and Packaging Division, Defence Food Research Laboratory; Siddhartha Nagar; Mysore 570011 India
| | - Sunny Kumar
- Food Engineering and Packaging Division, Defence Food Research Laboratory; Siddhartha Nagar; Mysore 570011 India
| | - Rajeshwara Reddy
- Food Engineering and Packaging Division, Defence Food Research Laboratory; Siddhartha Nagar; Mysore 570011 India
| |
Collapse
|
27
|
Mao J, He B, Zhang L, Li P, Zhang Q, Ding X, Zhang W. A Structure Identification and Toxicity Assessment of the Degradation Products of Aflatoxin B₁ in Peanut Oil under UV Irradiation. Toxins (Basel) 2016; 8:E332. [PMID: 27845743 PMCID: PMC5127128 DOI: 10.3390/toxins8110332] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 11/16/2022] Open
Abstract
Aflatoxins, a group of extremely hazardous compounds because of their genotoxicity and carcinogenicity to human and animals, are commonly found in many tropical and subtropical regions. Ultraviolet (UV) irradiation is proven to be an effective method to reduce or detoxify aflatoxins. However, the degradation products of aflatoxins under UV irradiation and their safety or toxicity have not been clear in practical production such as edible oil industry. In this study, the degradation products of aflatoxin B₁ (AFB₁) in peanut oil were analyzed by Ultra Performance Liquid Chromatograph-Thermo Quadrupole Exactive Focus mass spectrometry/mass spectrometry (UPLC-TQEF-MS/MS). The high-resolution mass spectra reflected that two main products were formed after the modification of a double bond in the terminal furan ring and the fracture of the lactone ring, while the small molecules especially nitrogen-containing compound may have participated in the photochemical reaction. According to the above results, the possible photodegradation pathway of AFB₁ in peanut oil is proposed. Moreover, the human embryo hepatocytes viability assay indicated that the cell toxicity of degradation products after UV irradiation was much lower than that of AFB₁, which could be attributed to the breakage of toxicological sites. These findings can provide new information for metabolic pathways and the hazard assessment of AFB₁ using UV detoxification.
Collapse
Affiliation(s)
- Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
| | - Bing He
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China.
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China.
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China.
| | - Xiaoxia Ding
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China.
| | - Wen Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
28
|
Ji N, Diao E, Li X, Zhang Z, Dong H. Detoxification and safety evaluation of aflatoxin B1 in peanut oil using alkali refining. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4009-14. [PMID: 26694215 DOI: 10.1002/jsfa.7592] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 05/26/2023]
Abstract
BACKGROUND Aflatoxin B1 (AFB1 ) is often detected in peanut oil, which comes from contaminated peanuts. AFB1 in peanut oil seriously threatens the health of consumers. However, there are few methods to effectively remove AFB1 in peanut oil. This study aimed to use an alkali-refining method to degrade AFB1 in peanut oil efficiently without increasing the equipment of oil and fat refining. RESULTS The optimum detoxifying conditions of AFB1 in peanut oil with alkali refining were established using response surface methodology (RSM), and the safety of peanut oil after being refined with alkali was evaluated based on the Ames tests and HepG2 cell viability. The results showed that AFB1 in peanut oil was decreased from 34.78 to 0.37 µg kg(-1) (98.94% reduction) under the optimum detoxifying conditions, i.e. when the initial temperature of alkali refining was 43.51 °C, the amount of excess alkali was 0.30%, the content of alkali solution was 23.42% and the end temperature of alkali refining was 77.07 °C. The acid value and color of peanut oil refined by alkali were improved significantly, while the peroxide value was increased within an acceptable level. The safety of peanut oil contaminated by AFB1 was improved significantly after being refined with alkali. CONCLUSION These results indicate that alkali refining is an effective method for removing AFB1 in peanut oil. The optimum detoxifying conditions of AFB1 in peanut oil with alkali refining could be used to guide the production of oil companies for ensuring food safety. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ning Ji
- College of Food Science and Engineering, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, China
| | - Enjie Diao
- College of Food Science and Engineering, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, China
| | - Xiangyang Li
- College of Food Science and Engineering, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, China
| | - Zheng Zhang
- College of Food Science and Engineering, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, China
| | - Haizhou Dong
- College of Food Science and Engineering, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, China
| |
Collapse
|