1
|
Zhang Y, Peng X, Gao F. Insights in Electrochemical Determination of Quercetin in Peach Vinegar by the Hexagonal Platinum Nanocrystal. ACS OMEGA 2024; 9:1850-1857. [PMID: 38222573 PMCID: PMC10785628 DOI: 10.1021/acsomega.3c08513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Peach vinegar is a popular condiment that is thought to have various health benefits. However, the low levels of quercetin and complex detection environment in peach vinegar make it difficult to detect using traditional methods. Electrochemical detection is a promising solution because it is sensitive, inexpensive, and provides real-time results. Herein, a hexagonal Pt nanocrystal was developed as an electrocatalyst for selective detection of quercetin in peach vinegar, and a comprehensive examination was given of the electrochemical characteristics of quercetin when applied to electrodes modified with platinum. The morphology and crystal properties of Pt nanocrystals were analyzed, and the Pt-modified electrode was found to exhibit strong electrocatalytic effects toward quercetin in peach vinegar with a high sensitivity of 58 μA μM-1. Furthermore, the investigation showcased exceptional specificity, consistency, sustained durability, and replicability of the Pt-modified electrode in identifying quercetin. The detection result of the Pt-modified electrode tested in three different peach vinegar samples demonstrated its practical utility in real-world applications. Overall, the findings of this study may have important implications for the development of more efficient and sensitive electrochemical sensors for the detection of quercetin and other analytes in vinegar.
Collapse
Affiliation(s)
- Ying Zhang
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, P. R. China
| | - Xilin Peng
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, P. R. China
| | - Feng Gao
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, P. R. China
| |
Collapse
|
2
|
Zhang Y, Tian X, Zhang Z, Tang N, Ding Y, Wang Y, Li D. Boronate affinity-based template-immobilization surface imprinted quantum dots as fluorescent nanosensors for selective and sensitive detection of myricetin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121023. [PMID: 35182922 DOI: 10.1016/j.saa.2022.121023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
In order to prepare a kind of efficient fluorescence sensors for determination of cis-diol-containing flavonoids, novel imprinted quantum dots for myricetin (Myr) were prepared based on boronate affinity-based template-immobilization surface imprinting. The obtained boronate affinity-based surface imprinted silica (imprinted APBA-functionalized CdTe QDs) was used as recognition elements. The quantum dots were used as signal-transduction materials. Under the optimum conditions, according to fluorescence quenching of imprinted APBA-functionalized CdTe QDs by Myr, the imprinting factor (IF) for Myr was evaluated to be 7.88. The result indicated that the boronate affinity functionalized quantum dots coated with imprinted silica were successfully prepared. The prepared imprinted APBA-functionalized CdTe QDs exhibited good sensitivity and selectivity for Myr. The fluorescence intensity was inversely proportional to the concentration of Myr in the 0.30-40 μM concentration range. And its detection limit was obtained to be 0.08 μM. Using the fluorescence sensors, the detection of Myr in real samples was successfully carried out, and the concentration of Myr in green tea and apple juice samples was evaluated to be 2.26 mg/g and 0.73 mg/g, respectively. The recoveries for the spiked green tea and apple juice samples were 95.2-105.0% and 91.5-111.0%, respectively. This study also provides an efficient fluorescent detection method for cis-diol-containing flavonoids in real samples.
Collapse
Affiliation(s)
- Yansong Zhang
- School of Food and Drug, Luoyang Normal University, Luoyang, 471934, China
| | - Xiping Tian
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Zixin Zhang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Na Tang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yihan Ding
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yipei Wang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Daojin Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| |
Collapse
|
3
|
Novel blue-emitting probes of polyethyleneimine-capped copper nanoclusters for fluorescence detection of quercetin. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01624-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
4
|
Fan Y, Yao J, Huang M, Linghu C, Guo J, Li Y. Non-conjugated polymer dots for fluorometric and colorimetric dual-mode detection of quercetin. Food Chem 2021; 359:129962. [PMID: 33945984 DOI: 10.1016/j.foodchem.2021.129962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 01/28/2023]
Abstract
Due to the biochemical and pharmacological activities, the convenient and effective detection of quercetin (Qc) is very important for biochemistry, pharmaceutical chemistry and clinical medicine. A kind of non-conjugated polymer dots (NCPDs) was used as a versatile and sensitive dual-mode optical output for Qc detection, which was synthesized by hyperbranched poly(ethylenimine) (PEI) and l-threonine via environmentallyfriendly way. The dual-mode method proposed in this work had high sensitivity and definiteselectivity for Qc detection. Additionally, it was convenient for the naked eyes to observe the fluorescence brightness and color change.
Collapse
Affiliation(s)
- Yu Fan
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jie Yao
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mengke Huang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chenxi Linghu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinlin Guo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Key Laboratory of Standardization of Chinese Medicine, Ministry of Education Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
5
|
Sadeghi S, Hosseinpour-Zaryabi M. A sensitive fluorescent probe based on dithizone-capped ZnS quantum dots for quercetin determination in biological samples. LUMINESCENCE 2020; 35:1391-1401. [PMID: 32592271 DOI: 10.1002/bio.3903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/09/2022]
Abstract
A simple turn on/off fluorescence approach based on dithizone-capped ZnS quantum dots (ZnS@DZ QDs) with the help of lead ions as a fluorescent probe for the quantitative determination of quercetin is reported. The interaction of lead ions with dithizone led to the formation of a rigid structure on the surface of ZnS@DZ QDs and turned on the fluorescence intensity of the QDs. After addition of quercetin to this probe and interaction with lead ions, the fluorescence emission turned off. Concerning the quenching fluorescence intensity of ZnS@DZ QDs/Pb2+ QDs probe induced by the target, under the optimum conditions, the probe enabled detection of quercetin in the concentration range from 0.54 μM to 21.7 μM with a correlation coefficient of 0.993 and detection limit of 0.25 μM. The present probe was applied successfully to the determine quercetin as a nutritional biomarker in human serum and 24-h urine samples.
Collapse
Affiliation(s)
- Susan Sadeghi
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand, Iran
| | | |
Collapse
|
6
|
Li D, Zhai S, Song R, Liu Z, Wang W. Determination of cis-diol-containing flavonoids in real samples using boronate affinity quantum dots coated with imprinted silica based on controllable oriented surface imprinting approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117542. [PMID: 31685427 DOI: 10.1016/j.saa.2019.117542] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 05/11/2023]
Abstract
Novel boronate affinity imprinted quantum dots (BA-CdTe@MIPs QDs) were used to develop a selective and sensitive fluorescent nanosensor for determination of cis-diol-containing flavonoids such as quercetin (Qu), baicalein (Bai) and luteolin (Lut) based on controllable oriented surface imprinting approach. The boronate affinity imprinted silica was used as recognition elements. Under the optimum conditions, the imprinting factor (IF) for Qu, Bai and Lut was evaluated to be 9.42, 6.58 and 10.91, respectively. The results indicated that the boronate affinity quantum dots coated with imprinted silica were successfully prepared. The obtained BA-CdTe@MIPs QDs provided high selectivity and high sensitivity for cis-diol-containing flavonoids such as quercetin and luteolin. The BA-CdTe@MIPs QDs exhibited linear decrease in fluorescence intensity with the increase of concentration of quercetin in the 0.05-25 μM concentration range. The detection limit (LOD) is evaluated to be 0.02 μM. The obtained fluorescent nanosensor could be successfully applied to efficient detection of cis-diol-containing flavonoids in onion skin and human urine samples. The recoveries for the spiked onion skin and urine samples were evaluated to be 83.50-104.00% and 86.67-105.00%, respectively. Clearly, this study provides a rapid and efficient fluorescent detection tool for cis-diol-containing flavonoids in real samples.
Collapse
Affiliation(s)
- Daojin Li
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, PR China.
| | - Simeng Zhai
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, PR China
| | - Rumeng Song
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, PR China
| | - Zheyao Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, PR China
| | - Weizhou Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, PR China
| |
Collapse
|
7
|
Cai Z, Li H, Wu J, Zhu L, Ma X, Zhang C. Ascorbic acid stabilised copper nanoclusters as fluorescent sensors for detection of quercetin. RSC Adv 2020; 10:8989-8993. [PMID: 35496543 PMCID: PMC9050032 DOI: 10.1039/d0ra01265c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/22/2020] [Indexed: 11/21/2022] Open
Abstract
In this report, green-emitting fluorescence copper nanoclusters (Cu NCs) were synthesized using ascorbic acid as reducing agent and protecting agent. The ascorbic acid capped Cu NCs (AA-Cu NCs) were characterized using fluorescence spectroscopy, UV-vis absorption spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The analysis data demonstrated that the AA-Cu NCs were highly dispersed with an average diameter of 2 nm. The as-prepared Cu NCs possessed good water solubility, excellent photostability and displayed excitation-dependent fluorescence characteristics. More importantly, the fluorescence intensity of AA-Cu NCs was linearly quenched in the presence of quercetin from 0.7 to 50 μM and the detection limit (LOD) was 0.19 μM. Finally, the fluorescence sensor was successfully employed to detect quercetin in bovine serum samples. A fluorescent sensor based on ascorbic acid-functionalized copper nanoclusters (AA-Cu NCs) were prepared for the sensitive detection of quercetin.![]()
Collapse
Affiliation(s)
- Zhifeng Cai
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong
- PR China
| | - Haoyang Li
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong
- PR China
| | - Jinglong Wu
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong
- PR China
| | - Li Zhu
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong
- PR China
| | - Xinru Ma
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong
- PR China
| | - Caifeng Zhang
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong
- PR China
- Humic Acid Engineering and Technology Research Center of Shanxi Province
| |
Collapse
|
8
|
Maqueira-Espinosa L, Aucelio RQ, da Silva AR, Pérez-Gramatges A. Role of a cationic surfactant in mediating interaction of flavonoids with 3-mercaptopropanoic acid capped CdTe quantum dots (3MPA-CdTe QDs). Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Aucelio RQ, Carvalho JM, Real JT, Maqueira-Espinosa L, Pérez-Gramatges A, da Silva AR. Study of the interaction of flavonoids with 3-mercaptopropionic acid modified CdTe quantum dots mediated by cetyltrimethyl ammonium bromide in aqueous medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 172:147-155. [PMID: 27106812 DOI: 10.1016/j.saa.2016.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 03/15/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
Flavonoids are polyphenols that help the maintenance of health, aiding the prevention of diseases. In this work, CdTe QDs coated with 3-mercaptopropionic acid (3MPA), with an average size of 2.7nm, were used as photoluminescence probe for flavonoids in different conditions. The interaction between 14 flavonoids and QDs was evaluated in aqueous dispersions in the absence and in the presence of cetyltrimethylammonium bromide (CTAB). To establish a relationship between photoluminescence quenching and the concentration of flavonoids, the Stern-Volmer model was used. In the absence of CTAB, the linear ranges for quercetin, morin and rutin were from 5.0×10-6molL-1 to 6.0×10-5molL-1 and from 1.0×10-5molL-1 to 6.0×10-4molL-1 for kaempferol. The sensibility of the Stern-Volmer curves (Ks) indicated that quercetin interacts more strongly with the probe: Ks quercetin>Ks kaempferol>Ks rutin>Ks morin. The conjugation extension in the 3 rings, and the acidic hydroxyl groups (positions 3'and 4') in the B-ring enhanced the interaction with 3MPA-CdTe QDs. The other flavonoids do not interact with the probe at 10-5molL-1 level. In CTAB organized dispersions, Ks 3-hydroxyflavone>Ks 7-hydroxyflavone>Ks flavona>Ks rutin in the range from 1.0×10-6molL-1 to 1.2×10-5molL-1 for flavones and of 1.0×10-6molL-1 to 1.0×10-5molL-1 for rutin. Dynamic light scattering, conductometric measurements and microenvironment polarity studies were employed to elucidate the QDs-flavonoids interaction in systems containing CTAB. The quenching can be attributed to the preferential solubility of hydrophobic flavonoid in the palisade layer of the CTAB aggregates adsorbed on the surface of the 3MPA CdTe QDs.
Collapse
Affiliation(s)
- Ricardo Q Aucelio
- Chemistry Department, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ, Brazil
| | - Juliana M Carvalho
- Chemistry Department, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ, Brazil
| | - Juliana T Real
- Chemistry Department, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ, Brazil
| | - Luis Maqueira-Espinosa
- Chemistry Department, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ, Brazil
| | - Aurora Pérez-Gramatges
- Chemistry Department, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ, Brazil
| | - Andrea R da Silva
- Centro Federal de Educação Tecnológica Celso Suckow da Fonseca-CEFET/RJ, 27600-000 Valença, RJ, Brazil.
| |
Collapse
|
10
|
Dwiecki K, Nogala-Kałucka M, Polewski K. Determination of Total Phenolic Compounds in Common Beverages Using CdTe Quantum Dots. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.12863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Krzysztof Dwiecki
- Department of Food Biochemistry and Analysis; Poznan University of Life Sciences; 60-623 Poznan Poland
| | - Małgorzata Nogala-Kałucka
- Department of Food Biochemistry and Analysis; Poznan University of Life Sciences; 60-623 Poznan Poland
| | - Krzysztof Polewski
- Department of Physics; Poznan University of Life Sciences; 60-637 Poznan Poland
| |
Collapse
|
11
|
Dwiecki K, Tomczyk Ł, Nogala-Kałucka M, Polewski K. Novel method of propyl gallate determination in rapeseed oil using CdSe/ZnS quantum dots. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201500453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Krzysztof Dwiecki
- Department of Food Biochemistry and Analysis; Poznan University of Life Sciences; Poznan Poland
| | - Łukasz Tomczyk
- Department of Food Quality Management; Poznan University of Life Sciences; Poznan Poland
| | | | - Krzysztof Polewski
- Department of Physics and Biophysics; Poznan University of Life Sciences; Poznan Poland
| |
Collapse
|