1
|
Tang J, Wang J, Gong P, Zhang H, Zhang M, Qi C, Chen G, Wang C, Chen W. Biosynthesis and Biotechnological Synthesis of Hydroxytyrosol. Foods 2024; 13:1694. [PMID: 38890922 PMCID: PMC11171820 DOI: 10.3390/foods13111694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024] Open
Abstract
Hydroxytyrosol (HT), a plant-derived phenolic compound, is recognized for its potent antioxidant capabilities alongside a spectrum of pharmacological benefits, including anti-inflammatory, anti-cancer, anti-bacterial, and anti-viral properties. These attributes have propelled HT into the spotlight as a premier nutraceutical and food additive, heralding a new era in health and wellness applications. Traditional methods for HT production, encompassing physico-chemical techniques and plant extraction, are increasingly being supplanted by biotechnological approaches. These modern methodologies offer several advantages, notably environmental sustainability, safety, and cost-effectiveness, which align with current demands for green and efficient production processes. This review delves into the biosynthetic pathways of HT, highlighting the enzymatic steps involved and the pivotal role of genetic and metabolic engineering in enhancing HT yield. It also surveys the latest progress in the biotechnological synthesis of HT, examining innovative strategies that leverage both genetically modified and non-modified organisms. Furthermore, this review explores the burgeoning potential of HT as a nutraceutical, underscoring its diverse applications and the implications for human health. Through a detailed examination of both the biosynthesis and biotechnological advances in HT production, this review contributes valuable insights to the field, charting a course towards the sustainable and scalable production of this multifaceted compound.
Collapse
Affiliation(s)
- Jiali Tang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (J.T.); (J.W.); (P.G.); (H.Z.); (M.Z.); (C.W.)
| | - Jiaying Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (J.T.); (J.W.); (P.G.); (H.Z.); (M.Z.); (C.W.)
| | - Pengfei Gong
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (J.T.); (J.W.); (P.G.); (H.Z.); (M.Z.); (C.W.)
| | - Haijing Zhang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (J.T.); (J.W.); (P.G.); (H.Z.); (M.Z.); (C.W.)
| | - Mengyao Zhang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (J.T.); (J.W.); (P.G.); (H.Z.); (M.Z.); (C.W.)
| | - Chenchen Qi
- ACK Co., Ltd., Urumqi 830022, China; (C.Q.); (G.C.)
| | - Guohui Chen
- ACK Co., Ltd., Urumqi 830022, China; (C.Q.); (G.C.)
| | - Chengtao Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (J.T.); (J.W.); (P.G.); (H.Z.); (M.Z.); (C.W.)
| | - Wei Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (J.T.); (J.W.); (P.G.); (H.Z.); (M.Z.); (C.W.)
| |
Collapse
|
2
|
Ma X, Li S, Tong X, Liu K. An overview on the current status and future prospects in Aspergillus cellulase production. ENVIRONMENTAL RESEARCH 2024; 244:117866. [PMID: 38061590 DOI: 10.1016/j.envres.2023.117866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Cellulase is a new research point besides glucoamylase, amylase, and protease in the enzyme industry. Cellulase can decompose lignocellulosic biomass into small-molecule sugars, which facilitates microbial utilization; thus, it has a vast market potential in the field of feed, food, energy, and chemistry. The Aspergillus was the first strain used in cellulase preparation because of its safety and non-toxicity, strong growth ability, and high enzyme yield. This review provides the latest research and advances on preparing cellulase from Aspergillus. The metabolic mechanisms of cellulase secretion by Aspergillus, the selection of fermentation substrates, the comparison of the fermentation modes, and the effect of fermentation conditions have been discussed in this review. Also, the subsequent separation and purification techniques of Aspergillus cellulase, including salting out, organic solvent precipitation, ultrafiltration, and chromatography, have been declared. Further, bottlenecks in Aspergillus cellulase preparation and corresponding feasible approaches, such as genetic engineering, mixed culture, and cellulase immobilization, have also been proposed in this review. This paper provides theoretical support for the efficient production and application of Aspergillus cellulase.
Collapse
Affiliation(s)
- Xiaoyu Ma
- China Institute of Geo-Environment Monitoring, China Geological Survey, Beijing 100081, China
| | - Shengpin Li
- China Institute of Geo-Environment Monitoring, China Geological Survey, Beijing 100081, China
| | - Xiaoxia Tong
- China Institute of Geo-Environment Monitoring, China Geological Survey, Beijing 100081, China
| | - Kun Liu
- China Institute of Geo-Environment Monitoring, China Geological Survey, Beijing 100081, China.
| |
Collapse
|
3
|
Solid State Fermentation of Olive Leaves as a Promising Technology to Obtain Hydroxytyrosol and Elenolic Acid Derivatives Enriched Extracts. Antioxidants (Basel) 2022; 11:antiox11091693. [PMID: 36139767 PMCID: PMC9496001 DOI: 10.3390/antiox11091693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Extraction of valuable bioactive compounds from olive leaves is a hot topic and the use of sustainable and green technologies is mandatory in terms of circular economy. In this way, the use of fermentation technologies showed very interesting results in terms of phenolic compound recovery. Because of that in this work the use of solid state fermentations, as valuable tool to improve the phenolic extraction has been checked. Aspergillus oryzae (in mycelium and spore form), Aspergillus awamori and Aspergillus niger were used as fermentation microrganisms. Phenolic compounds were determined by HPLC-ESI-TOF-MS and, to our knowledge, new compounds have been tentatively identified in olive leaves. Fermentation using mycelium of Aspergillus awamori, Aspergillus niger and Aspergillus oryzae were effective to increase both hydroxytyrosol and elenolic acid derivatives whereas the use of spores of Aspergillus oryzae caused a loss of hydroxytyrosoyl derivatives, contrary the content of elenolic derivatives are comparable with the other fermentation treatments and higher than control. The proposed fermentation processes using the mycelium of Aspergillus awamori, Aspergillus niger and Aspergillus oryzae lead to an increase the hydroxytyrosyl and elenolic acid derivatives and could be used at industrial scale to obtain enriched extracts.
Collapse
|
4
|
Wikandari R, Hasniah N, Taherzadeh MJ. The role of filamentous fungi in advancing the development of a sustainable circular bioeconomy. BIORESOURCE TECHNOLOGY 2022; 345:126531. [PMID: 34896535 DOI: 10.1016/j.biortech.2021.126531] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Human activities generate enormous amounts of organic wastes and residues. Filamentous fungi (FF) are able to grow on a broad range of substrates and survive over a wide spectrum of growth conditions. These characteristics enable FF to be exploited in biorefineries for various waste streams. Valorization of food industry byproducts into biomass and various arrays of value-added products using FF creates promising pathways toward a sustainable circular economy. This approach might also contribute to reaching the sustainable development goals set by the United Nations, particularly for zero hunger as well as affordable and clean energy. This paper presents the application of filamentous fungi in food, feeds, fuels, biochemicals, and biopolymers. The nutritional values, health benefits, and safety of foods derived from byproducts of food industries are also addressed. The technoeconomical feasibilities, sustainability aspects and challenges and future perspectives for biorefineries using filamentous fungi are discussed.
Collapse
Affiliation(s)
- Rachma Wikandari
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Nurul Hasniah
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | |
Collapse
|
5
|
Unconventional β-Glucosidases: A Promising Biocatalyst for Industrial Biotechnology. Appl Biochem Biotechnol 2021; 193:2993-3016. [PMID: 33871765 DOI: 10.1007/s12010-021-03568-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
β-Glucosidases primarily catalyze removal of terminal glucosyl residues from a variety of glucoconjugates and also perform transglycosylation and reverse hydrolysis. These catalytic properties can be readily exploited for degradation of lignocellulosic biomass as well as for pharmaceutical, food and flavor industries. β-Glucosidases have been either isolated in the native form from the producer organism or recombinantly expressed and gaged for their biochemical properties and substrate specificities. Although almond and Aspergillus niger have been instantly recognizable sources of β-glucosidases utilized for various applications, an intricate pool of novel β-glucosidases from different sources can provide their potent replacements. Moreover, one can envisage the better efficacy of these novel candidates in biofuel and biorefinery industries facilitating efficient degradation of biomass. This article reviews properties of the novel β-glucosidases such as glucose tolerance and activation, substrate specificity, and thermostability which can be useful for their applications in lignocellulose degradation, food industry, and pharmaceutical industry in comparison with the β-glucosidases from the conventional sources. Such β-glucosidases have potential for encouraging white biotechnology.
Collapse
|
6
|
Optimization of bioconversion of oleuropein, of olive leaf extract, to hydroxytyrosol by Nakazawaea molendini-olei using HPLC-UV and a method of experimental design. J Microbiol Methods 2020; 176:106010. [DOI: 10.1016/j.mimet.2020.106010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 01/10/2023]
|
7
|
Mlaik N, Sayadi S, Hamza M, Khoufi S. Production and characterization of β-glucosidase from Aspergillus niger fermentation: Application for organic fraction of municipal solid waste hydrolysis and methane enhancement. Biotechnol Prog 2019; 36:e2902. [PMID: 31469516 DOI: 10.1002/btpr.2902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/06/2019] [Accepted: 08/27/2019] [Indexed: 11/11/2022]
Abstract
The anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) is currently an attractive treatment process with energy production in the form of biogas. Hydrolysis is the rate-limiting step for the anaerobic digestion of solid wastes. Thus, in the present study fungal enzymatic pretreatment of OFMSW was applied to enhance biogas production. Two enzyme cocktails rich on β-glucosidase were produced from submerged fermentation of Aspergillus niger on basal medium using OFMSW as carbon source and urea (Urea cocktail) and Ulva rigida as nitrogen source (Ulva cocktail). Ulva cocktail displayed an important effect on OFMSW solubilization. Therefore, an increase of reducing sugar concentration about 60% was obtained which was in correlation with chemical oxygen demand (COD) increase. The performance of enzymatic pretreatment on anaerobic digestion of OFMSW was studied by conducting biochemical methane potential tests. Results showed that the enzymatic pretreatment improved methane yield of OFMSW even at high solid concentration. High methane yield about 500 ml/g total volatile solid was obtained, which corresponds up to 68% enhancement over the control.
Collapse
Affiliation(s)
- Najoua Mlaik
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Sami Sayadi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Manel Hamza
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Sonia Khoufi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, Sfax, Tunisia
| |
Collapse
|
8
|
Liu M, Yong Q, Lian Z, Huang C, Yu S. Continuous Bioconversion of Oleuropein from Olive Leaf Extract to Produce the Bioactive Product Hydroxytyrosol Using Carrier-Immobilized Enzyme. Appl Biochem Biotechnol 2019; 190:148-165. [PMID: 31313241 DOI: 10.1007/s12010-019-03081-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/05/2019] [Indexed: 12/20/2022]
Abstract
Feasibility and stability were evaluated of a continuous multi-batch process for converting oleuropein (OLE) from olive leaf extract to the bioactive product hydroxytyrosol (HT). Carrier beads made of three different materials (calcium alginate, chitosan with deacetylated α-chitin nanofibers (DEChN), or porous ceramic) were investigated for morphology, thermogravimetric, sorption, and viscoelastic properties. Enzymatic hydrolysis of OLE conducted in a packed bed bioreactor containing cellulase immobilized to carrier beads yielded OLE degradation rates of ~ 90% and an average HT yield of ~ 70% over 20 batches. Ultimately, inorganic porous ceramic beads were less costly and exhibited superior performance relative to organic carriers and thus were deemed most suitable for industrial-scale HT production. Systems utilizing enzyme immobilization within packed bed reactors hold promise for achieving efficient production of valuable bioproducts from discarded biomass materials.
Collapse
Affiliation(s)
- Min Liu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Yitong Food Industry Co., Ltd, Xuzhou, 221000, China
| | - Qiang Yong
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhina Lian
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shiyuan Yu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing, 210037, People's Republic of China. .,College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
9
|
Liu M, Yong Q, Yu S. Efficient bioconversion of oleuropein from olive leaf extract to antioxidant hydroxytyrosol by enzymatic hydrolysis and high-temperature degradation. Biotechnol Appl Biochem 2018; 65:680-689. [DOI: 10.1002/bab.1651] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/15/2018] [Accepted: 02/03/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Min Liu
- Key Laboratory of Forest Genetics and Biotechnology of the Ministry of Education; Nanjing People's Republic of China
- College of Chemical Engineering; Nanjing Forestry University; Nanjing People's Republic of China
| | - Qiang Yong
- College of Chemical Engineering; Nanjing Forestry University; Nanjing People's Republic of China
| | - Shiyuan Yu
- Key Laboratory of Forest Genetics and Biotechnology of the Ministry of Education; Nanjing People's Republic of China
- College of Chemical Engineering; Nanjing Forestry University; Nanjing People's Republic of China
| |
Collapse
|
10
|
Delgado-Povedano MDM, Priego-Capote F, Luque de Castro MD. Selective ultrasound-enhanced enzymatic hydrolysis of oleuropein to its aglycon in olive (Olea europaea L.) leaf extracts. Food Chem 2017; 220:282-288. [DOI: 10.1016/j.foodchem.2016.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 01/13/2023]
|
11
|
Dammak I, Khoufi S, Sayadi S. A performance comparison of olive oil mill wastewater enzymatic treatments. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Production of β-glucosidase from wheat bran and glycerol by Aspergillus niger in stirred tank and rotating fibrous bed bioreactors. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|