1
|
Aleryani H, Al-Dalali S, Gao Q, Abdo AA, Al-Zamani Z, Sri Prabakusuma A, Ahmada AK, Alals OA, He JS. Physicochemical and microbiological evaluation of treated Gastrodia elata with combination of slightly acidic electrolyzed water and lithium magnesium silicate under certain temperatures and different storage periods. FOOD SCI TECHNOL INT 2024:10820132241271798. [PMID: 39295422 DOI: 10.1177/10820132241271798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
This study aimed to investigate the impact of slightly acidic electrolyzed water combined with lithium magnesium silicate hydrosol on the quality of fresh slices of Gastrodia elata under varying storage temperatures, including room temperature fresh slices of Gastrodia elata 25 °C and 37 °C. Fresh slices of Gastrodia elata 25 and 37 samples were stored for 13 days and extensively analyzed for color, weight loss, decay index, bacterial count, vitamin C, and polysaccharide contents during different storage periods. The findings revealed that the slightly acidic electrolyzed water + hydrosol treatment notably decreased weight loss and decay index compared to distilled water and slightly acidic electrolyzed water treatments. Moreover, fresh slices of Gastrodia elata treated with slightly acidic electrolyzed water + hydrosol exhibited untraceable bacterial counts after 3 days, with counts starting to increase after 7 days of storage. The bacterial counts rose from 3.25 to 5.36 and from 4.13 to 5.79 log CFU/g under both storage conditions. The application of slightly acidic electrolyzed water + hydrosol resulted in reduced chromaticity values of L*, a*, and b* on the Gastrodia elata surface, along with a lower percentage loss of polysaccharide contents and vitamin C compared to distilled water and slightly acidic electrolyzed water treatments. These results suggested that Gastrodia elata treated with slightly acidic electrolyzed water + hydrosol maintained its quality characteristics and nutritional attributes, exhibiting greater stability during storage.
Collapse
Affiliation(s)
- Hamzah Aleryani
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Department of Food Sciences and Technology, Faculty of Agriculture and Food Sciences, Ibb University, Ibb, Yemen
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Sam Al-Dalali
- Department of Food Sciences and Technology, Faculty of Agriculture and Food Sciences, Ibb University, Ibb, Yemen
| | - Qing Gao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Abdullah Aa Abdo
- Department of Food Sciences and Technology, Faculty of Agriculture and Food Sciences, Ibb University, Ibb, Yemen
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Zakarya Al-Zamani
- Department of Food Sciences and Technology, Faculty of Agriculture and Food Sciences, Ibb University, Ibb, Yemen
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Adhita Sri Prabakusuma
- Vocational School of Foodservice Industry, Food Biotechnology Research Group, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
| | - Ahmada Khamis Ahmada
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Omar Abdulqader Alals
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Jin-Song He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
2
|
Okpala COR, Juchniewicz S, Leicht K, Skendrović H, Korzeniowska M, Guiné RP. Quality attributes of different marinated oven-grilled pork neck meat. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2166952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Charles Odilichukwu R Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
- UGA Cooperative Extension, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Szymon Juchniewicz
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Katarzyna Leicht
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Hanna Skendrović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Raquel P.F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, Viseu, Portugal
| |
Collapse
|
3
|
Villasante J, Martin-Lujano A, Almajano MP. Characterization and Application of Gelatin Films with Pecan Walnut and Shell Extract ( Carya illinoiensis). Polymers (Basel) 2020; 12:E1424. [PMID: 32604735 PMCID: PMC7362019 DOI: 10.3390/polym12061424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 11/19/2022] Open
Abstract
Phenolic compounds that come from natural products are a good option for minimizing lipid oxidation. It should be noted that these are not only introduced directly into the food, but also incorporated into edible biofilms. In contact with food, they extend its useful life by avoiding contact with other surface and preventing deterioration air, one of the main objectives. In particular, gelatin is a biopolymer that has a great potential due to its abundance, low cost and good film-forming capacity. The aim of this study has been to design and analyse gelatin films that incorporate bioactive compounds that come from the walnut and a by-product, the walnut shell. The results showed that mechanical and water vapor barrier properties of the developed films varied depending on the concentration of the walnut, shell and synthetic antioxidant. With increasing walnut concentration (15%) the permeability to water vapor (0.414 g·mm/m2·day·Pascal, g·mm/m2·day·Pa) was significantly lower than the control (5.0368 g·mm/m2·day·Pa). Furthermore, in the new films the elongation at the break and Young's modulus decrease by six times with respect to the control. Films with pure gelatin cannot act as an antioxidant shield to prevent food oxidation, but adding pecan walnut (15% concentration) presents 30% inhibition of the DPPH stable radical. Furthermore, in the DSC, the addition of walnut (15 and 9% concentrations), showed the formation of big crystals; which could improve the thermal stability of gelatin films. The use of new gelatin films has shown good protection against the oxidation of beef patties, increasing the useful lifetime up to nine days, compared to the control (3-4 days), which opens up a big field to the commercialization of meat products with lower quantities of synthetic products.
Collapse
Affiliation(s)
| | | | - María Pilar Almajano
- Chemical Engineering Department, Universitat Politècnica de Catalunya, Av.Diagonal 647, 08028 Barcelona, Spain; (J.V.); (A.M.-L.)
| |
Collapse
|
4
|
Esua OJ, Cheng JH, Sun DW. Functionalization of water as a nonthermal approach for ensuring safety and quality of meat and seafood products. Crit Rev Food Sci Nutr 2020; 61:431-449. [PMID: 32216453 DOI: 10.1080/10408398.2020.1735297] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Meat and seafood products present a viable medium for microbial propagation, which contributes to foodborne illnesses and quality losses. The development of novel and effective techniques for microbial decontamination is therefore vital to the food industry. Water presents a unique advantage for large-scale applications, which can be functionalized to inactivate microbial growth, ensuring the safety and quality of meat and seafood products. By taking into account the increased popularity of functionalized water utilization through electrolysis, ozonation and cold plasma technology, relevant literature regarding their applications in meat and seafood safety and quality are reviewed. In addition, the principles of generating functionalized water are presented, and the safety issues associated with their uses are also discussed.Functionalization of water is a promising approach for the microbiological safety and quality of meat and seafood products and possesses synergistic effects when combined with other decontamination approaches. However, functionalized water is often misused since the active antimicrobial component is applied at a much higher concentration, despite the availability of applicable regulations. Functionalized water also shows reduced antimicrobial efficiency and may produce disinfection by-products (DBPs) in the presence of organic matter, especially at a higher concentration of active microbial component. Utilization should be encouraged within regulated guidelines, especially as hurdle technology, while plasma functionalized water which emerges with great potentials should be exploited for future applications. It is hoped that this review should encourage the industry to adopt the functionalized water as an effective alternative technique for the food industry.
Collapse
Affiliation(s)
- Okon Johnson Esua
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
5
|
Characterization of Job's tears (Coix lachryma-jobi L.) starch films incorporated with clove bud essential oil and their antioxidant effects on pork belly during storage. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.102] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
A fast and non-destructive LF-NMR and MRI method to discriminate adulterated shrimp. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9748-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Król Ż, Kulig D, Marycz K, Zimoch-Korzycka A, Jarmoluk A. The Effects of Using Sodium Alginate Hydrosols Treated with Direct Electric Current as Coatings for Sausages. Polymers (Basel) 2017; 9:E602. [PMID: 30965905 PMCID: PMC6418599 DOI: 10.3390/polym9110602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 11/16/2022] Open
Abstract
We investigated the effect of sodium alginate hydrosols (1%) with 0.2% of NaCl treated with direct electric current (DC) used as a coating on microbial (Total Viable Counts, Psychrotrophic bacteria, yeast and molds, Lactic acid bacteria, Enterobacteriaceae), physiochemical (pH, lipid oxidation, antioxidant activity, weight loss, color) and sensory properties of skinned pork sausages or with artificial casing stored at 4 °C for 28 days. Moreover, the cytotoxicity analysis of sodium alginate hydrogels was performed. The results have shown that application of experimental coatings on the sausage surface resulted in reducing all tested groups of microorganisms compared to control after a 4-week storage. The cytotoxicity analysis revealed that proliferation of RAW 264.7 and L929 is not inhibited by the samples treated with 200 mA. Ferric reducing antioxidant power (FRAP) and free radical scavenging activity (DPPH) analyses showed that there are no significant differences in antioxidant properties between control samples and those covered with sodium alginate. After 28 days of storage, the highest value of thiobarbituric acid-reactive substances (TBARS) was noticed for variants treated with 400 mA (1.07 mg malondialdehyde/kg), while it was only slightly lower for the control sample (0.95 mg MDA/kg). The obtained results suggest that sodium alginate treated with DC may be used as a coating for food preservation because of its antimicrobial activity and lack of undesirable impact on the quality factors of sausages.
Collapse
Affiliation(s)
- Żaneta Król
- Department of Animal Products Technology and Quality Management, The Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37/41, 51-630 Wroclaw, Poland.
| | - Dominika Kulig
- Department of Animal Products Technology and Quality Management, The Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37/41, 51-630 Wroclaw, Poland.
| | - Krzysztof Marycz
- Department of Environment Hygiene and Animal Welfare, The Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 38 C, 50-630 Wroclaw, Poland.
| | - Anna Zimoch-Korzycka
- Department of Animal Products Technology and Quality Management, The Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37/41, 51-630 Wroclaw, Poland.
| | - Andrzej Jarmoluk
- Department of Animal Products Technology and Quality Management, The Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37/41, 51-630 Wroclaw, Poland.
| |
Collapse
|