1
|
Peng X, Yang S, Liu Y, Ren K, Tian T, Tong X, Dai S, Lyu B, Yu A, Wang H, Jiang L. Application of kombucha combined with fructo-oligosaccharides in soy milk: Colony composition, antioxidant capacity, and flavor relationship. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
2
|
Xie Y, Guan Z, Zhang S, Zhang J, Yang Z, Regenstein JM, Zhou P. Evaluation of Sufu Fermented Using Mucor racemosus M2: Biochemical, Textural, Structural and Microbiological Properties. Foods 2023; 12:foods12081706. [PMID: 37107500 PMCID: PMC10138062 DOI: 10.3390/foods12081706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The quality and safety of sufu fermented using Mucor racemosa M2 was studied and compared with naturally fermented sufu. After 90 days post-fermentation, both naturally fermented and inoculated fermented sufu reached the maturity standard of sufu, and the degree of protein hydrolysis of natural sufu (WP/TP: 34% ± 1%; AAN/TN: 33% ± 1%) was slightly higher than that of the inoculated sufu (WP/TP: 28.2% ± 0.4%; AAN/TN: 27% ± 1%). The hardness and adhesiveness of inoculated sufu (Hadness: 1063 g ± 211 g; Adhesiveness: -80 g ± 47 g) were significantly greater than those of natural sufu (Hadness: 790 g ± 57 g; Adhesiveness: -23 g ± 28 g), and the internal structure of natural sufu was denser and more uniform than that of inoculated sufu. A total of 50 aroma compounds were detected in natural and inoculated sufu. The total number of bacterial colonies in naturally fermented sufu was significantly higher than that in inoculated sufu, and the pathogenic bacteria in both types of fermented sufu were lower than the limit of pathogenic bacteria required in fermented soybean products. The content of biogenic amines in sufu was determined by high performance liquid chromatography (HPLC), and the results showed that the content of biogenic amines (Putrescine, Cadaverine, Histamine, Tyramine, etc.) in naturally fermented sufu was significantly higher than that in inoculated fermented sufu. Especially the histamine content, after 90 days of fermentation, was found to be 64.95 ± 4.55 for inoculated fertilization and 44.24 ± 0.71 for natural fertilization. Overall, the quality of inoculated sufu was somewhat better than that of natural sufu, and the M2 strain can be used to ferment sufu.
Collapse
Affiliation(s)
- Yuan Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ziyu Guan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shitong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhihui Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Joe M Regenstein
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Mao J, Zhou Z, Yang H. Microbial succession and its effect on the formation of umami peptides during sufu fermentation. Front Microbiol 2023; 14:1181588. [PMID: 37138594 PMCID: PMC10149673 DOI: 10.3389/fmicb.2023.1181588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Sufu, a traditional Chinese fermented food, is famous for its unique flavor, especially umami. However, the formation mechanism of its umami peptides is still unclear. Here, we investigated the dynamic change of both umami peptides and microbial communities during sufu production. Based on peptidomic analysis, 9081 key differential peptides were identified, which mainly involved in amino acid transport and metabolism, peptidase activity and hydrolase activity. Twenty-six high-quality umami peptides with ascending trend were recognized by machine learning methods and Fuzzy c-means clustering. Then, through correlation analysis, five bacterial species (Enterococcus italicus, Leuconostoc citreum, L. mesenteroides, L. pseudomesenteroides, Tetragenococcus halophilus) and two fungi species (Cladosporium colombiae, Hannaella oryzae) were identified to be the core functional microorganisms for umami peptides formation. Functional annotation of five lactic acid bacteria indicated their important functions to be carbohydrate metabolism, amino acid metabolism and nucleotide metabolism, which proved their umami peptides production ability. Overall, our results enhanced the understanding of microbial communities and the formation mechanism of umami peptides in sufu, providing novel insights for quality control and flavor improvement of tofu products.
Collapse
Affiliation(s)
- Jieqi Mao
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongshun Yang
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, China
- *Correspondence: Hongshun Yang,
| |
Collapse
|
4
|
Wei G, Chitrakar B, Regenstein JM, Sang Y, Zhou P. Microbiology, flavor formation, and bioactivity of fermented soybean curd (furu): A review. Food Res Int 2023; 163:112183. [PMID: 36596125 DOI: 10.1016/j.foodres.2022.112183] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Soybeans are an important plant-based food but its beany flavor and anti-nutritional factors limit its consumption. Fermentation is an effective way to improve its flavor and nutrition. Furu is a popular fermented soybean curd and mainly manufactured in Asia, which has been consumed for thousands of years as an appetizer because of its attractive flavors. This review first classifies furu products on the basis of various factors; then, the microorganisms involved in its fermentation and their various functions are discussed. The mechanisms for the formation of aroma and taste compounds during fermentation are also discussed; and the microbial metabolites and their bioactivities are analyzed. Finally, future prospects and challenges are introduced and further research is proposed. This information is needed to protect the regional characteristics of furu and to regulate its consistent quality. The current information suggests that more in vivo experiments and further clinical trials are needed to confirm its safety and the microbial community needs to be optimized and standardized for each type of furu to improve the production process.
Collapse
Affiliation(s)
- Guanmian Wei
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
5
|
Fermentation performance, nutrient composition, and flavor volatiles in soy milk after mixed culture fermentation. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Qiao Y, Zhang K, Zhang Z, Zhang C, Sun Y, Feng Z. Fermented soybean foods: A review of their functional components, mechanism of action and factors influencing their health benefits. Food Res Int 2022; 158:111575. [PMID: 35840260 DOI: 10.1016/j.foodres.2022.111575] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/27/2022]
Abstract
After thousands of years of evolution and development, traditional fermented soybean foods, with their unique charm, have gained a stable place in the global market. With the explosive development of modern biological technologies, some traditional fermented soybean foods that possess health-promoting benefits are gradually appearing. Physiologically active substances in fermented soybean foods have received extensive attention in recent decades. This review addresses the potential health benefits of several representative fermented soybean foods, as well as the action mechanism and influencing factors of their functional components. Phenolic compounds, low-molecular-weight peptides, melanoidins, furanones and 3-hydroxyanthranilic acid are the antioxidative components predominantly found in fermented soybean foods. Angiotensin I-converting enzyme inhibitory peptides and γ-aminobutyric acid isolated from fermented soy foods provide potential selectivity for hypertension therapy. The potential anti-inflammatory bioactive components in fermented soybean foods include γ-linolenic acid, butyric acid, soy sauce polysaccharides, 2S albumin and isoflavone glycones. Deoxynojirimycin, genistein, and betaine possess high activity against α-glucosidase. Additionally, fermented soybean foods contain neuroprotective constituents, including indole alkaloids, nattokinase, arbutin, and isoflavone vitamin B12. The anticancer activities of fermented soybean foods are associated with surfactin, isolavone, furanones, trypsin inhibitors, and 3-hydroxyanthranilic acid. Nattokinase is highly correlated with antioxidant activity. And a high level of menaquinones-7 is linked to protection against neurodegenerative diseases. Sufficiently recognizing and exploiting the health benefits and functional components of traditional fermented soybean foods could provide a new strategy in the development of the food fermentation industry.
Collapse
Affiliation(s)
- Yali Qiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Kenan Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Zongcai Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Chao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Yan Sun
- Heilongjiang Tobacco Industry Co., Ltd. Harbin Cigarette Factory, Harbin 150027, China
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China; Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China.
| |
Collapse
|
7
|
Xi X, Ke J, Ma Y, Liu X, Gu X, Wang Y. Physiochemical and taste characteristics of traditional Chinese fermented food sufu. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoli Xi
- College of Food Science and Technology Hebei Agricultural University Baoding China
| | - Jingxuan Ke
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation Nanyang Institute of Technology Nanyang China
| | - Yanli Ma
- College of Food Science and Technology Hebei Agricultural University Baoding China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation Nanyang Institute of Technology Nanyang China
| | - Xu Liu
- College of Food Science and Technology Hebei Agricultural University Baoding China
| | - Xiaodong Gu
- College of Food Science and Technology Hebei Agricultural University Baoding China
| | - Yinzhuang Wang
- College of Food Science and Technology Hebei Agricultural University Baoding China
| |
Collapse
|
8
|
Effects of microbial community succession on flavor compounds and physicochemical properties during CS sufu fermentation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112313] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Cai H, Dumba T, Sheng Y, Li J, Lu Q, Liu C, Cai C, Feng F, Zhao M. Microbial diversity and chemical property analyses of sufu products with different producing regions and dressing flavors. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Liu L, Chen X, Hao L, Zhang G, Jin Z, Li C, Yang Y, Rao J, Chen B. Traditional fermented soybean products: processing, flavor formation, nutritional and biological activities. Crit Rev Food Sci Nutr 2020; 62:1971-1989. [PMID: 33226273 DOI: 10.1080/10408398.2020.1848792] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traditional fermented soybean food has emerged as an important part of people's dietary structure because of the unique flavors and improved health benefit. During fermentation, the nutrients in soybean undergo a series of biochemical reactions catalyzed naturally by microorganism secreted enzymes. Thereafter, many functional and bioactive substances such as bioactive peptides, unsaturated fatty acids, free soy isoflavones, vitamins and minerals are produced, making fermented soy products more advantageous in nutrition and health. This review comprehensively discusses the historical evolution, distribution, traditional fermentation processing, main sources and characteristics of fermented strains, flavor components, nutritional properties, and biological activities of four traditional fermented soybean foods including douchi, sufu, dajiang, and soy sauce. In the end, we introduce four major challenges encountered by traditional fermented soybean foods including high salt content, formation of biogenic amine, the presence of pathogenic microorganisms and mycotoxins, and quality inconsistency. We conclude that the establishment of scientific quality standard and innovated fermentation processing is the potential solutions to combat the issues and improve the safety of traditional fermented soybean products.
Collapse
Affiliation(s)
- Libo Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Xiaoqian Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Linlin Hao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Guofang Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhao Jin
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Chun Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Yuzhuo Yang
- Heilongjiang Green Food Research Institute, Harbin, China
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
11
|
Zheng Y, Fei Y, Yang Y, Jin Z, Yu B, Li L. A potential flavor culture: Lactobacillus harbinensis M1 improves the organoleptic quality of fermented soymilk by high production of 2,3-butanedione and acetoin. Food Microbiol 2020; 91:103540. [DOI: 10.1016/j.fm.2020.103540] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
|
12
|
Xu D, Wang P, Zhang X, Zhang J, Sun Y, Gao L, Wang W. High-throughput sequencing approach to characterize dynamic changes of the fungal and bacterial communities during the production of sufu, a traditional Chinese fermented soybean food. Food Microbiol 2020; 86:103340. [PMID: 31703864 DOI: 10.1016/j.fm.2019.103340] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
Abstract
Red sufu is a traditional food produced by the fermentation of soybean. In this study, sufu samples were periodically collected during the whole fermentation to investigate the dynamic changes of fungal and bacterial communities using high-throughput sequencing technology. The overall process can be divided into pre- and post-fermentation. During post-fermentation, the pH value showed a gradual decrease over time while the amino nitrogen content increased. Trichosporon, Actinomucor and Cryptococcus were the main genera in pre-fermentation while Monascus and Aspergillus were dominant in post-fermentation. This huge shift in fungal composition was caused by process procedure of pouring dressing mixture. However, the bacterial composition was not greatly changed after pouring dressing mixture, the Acinetobacter and Enterobacter were the predominant genera throughout the whole process. Furthermore, Bacillus species were first detected after adding dressing mixture, but declined abruptly to a very low level (0.07%) by the end of the fermentation. Our work demonstrates the dynamic changes of physicochemical properties and microbial composition in every fermentation stage, the knowledge of which could potentially serve as a foundation for improving the safety and quality of sufu in the future.
Collapse
Affiliation(s)
- Dandan Xu
- Beijing Academy of Food Sciences, 100068, Beijing, China; Beijing Food Brewing Institute, 100050, Beijing, China
| | - Peng Wang
- Beijing Academy of Food Sciences, 100068, Beijing, China; Beijing Food Brewing Institute, 100050, Beijing, China
| | - Xin Zhang
- Beijing Academy of Food Sciences, 100068, Beijing, China
| | - Jian Zhang
- Beijing Academy of Food Sciences, 100068, Beijing, China; Beijing Food Brewing Institute, 100050, Beijing, China
| | - Yong Sun
- Beijing Academy of Food Sciences, 100068, Beijing, China
| | - Lihua Gao
- Beijing Academy of Food Sciences, 100068, Beijing, China
| | - Wenping Wang
- Beijing Academy of Food Sciences, 100068, Beijing, China.
| |
Collapse
|
13
|
Wang P, Ma X, Wang W, Xu D, Zhang X, Zhang J, Sun Y. Characterization of flavor fingerprinting of red sufu during fermentation and the comparison of volatiles of typical products. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Xia X, Dai Y, Wu H, Liu X, Wang Y, Yin L, Wang Z, Li X, Zhou J. Kombucha fermentation enhances the health-promoting properties of soymilk beverage. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103549] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
15
|
XIE C, ZENG H, LI J, QIN L. Comprehensive explorations of nutritional, functional and potential tasty components of various types of Sufu, a Chinese fermented soybean appetizer. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.37917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | | | | | - Likang QIN
- Guizhou University, China; Key Laboratory of Agricultural and Animal Products Storage and Processing, China
| |
Collapse
|
16
|
Xie C, Zeng H, Qin L. Physicochemical, taste, and functional changes during the enhanced fermentation of low-salt Sufu paste, a Chinese fermented soybean food. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2018.1560313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Chunzhi Xie
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- College of Life Science, Guizhou University, Guiyang, China
| | - Haiying Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Likang Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Agricultural and Animal Products Storage and Processing of Guizhou Province, Guizhou University, Guiyang, China
| |
Collapse
|
17
|
Fei Y, Liu L, Liu D, Chen L, Tan B, Fu L, Li L. Investigation on the safety of Lactobacillus amylolyticus L6 and its fermentation properties of tofu whey. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.05.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Chadha R, Bhalla Y, Jain A, Chadha K, Karan M. Dietary Soy Isoflavone: A Mechanistic Insight. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Soy, a major component of the diet for centuries contains the largest concentration of isoflavones, a class of phytoestrogens. A variety of health benefits are associated with the consumption of soy primarily because of the isoflavones genistein, daidzein, and glycitein with a potential protective effect against a number of chronic diseases. Owing to the pharmaceutical and nutraceutical properties allied with isoflavonoids and their use in functional foods, there is a growing interest in these compounds. This review throws light on the chemistry, and significant pharmacological and biopharmaceutical aspects of soy isoflavones. This article critically describes the mechanisms of action, infers conclusions and shows opportunity for future research.
Collapse
Affiliation(s)
- Renu Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Yashika Bhalla
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ankita Jain
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Kunal Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Maninder Karan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|