1
|
Huang YP, Masarweh C, Paviani B, Mills DA, Barile D. Exploring bioactive compounds in chickpea and bean aquafaba: Insights from glycomics and peptidomics analyses. Food Chem 2024; 460:140635. [PMID: 39111140 DOI: 10.1016/j.foodchem.2024.140635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/05/2024]
Abstract
The objective of this study was to identify bioactive oligosaccharides and peptides in the cooking water of chickpeas and common beans, known as aquafaba. The oligosaccharides stachyose, raffinose and verbascose were quantified by high-performance anion-exchange chromatography; 78 and 67 additional oligosaccharides were identified in chickpea and common bean aquafaba, respectively, by LC-MS/MS. Chickpea aquafaba uniquely harbored ciceritol and other methyl-inositol-containing oligosaccharides. In prebiotic growth assays, chickpea aquafaba oligosaccharides were differentially utilized, promoting growth of Limosilactobacillus reuteri DSM 20016 and Bifidobacterium longum subsp. infantis ATCC 15697, but not Lacticaseibacillus rhamnosus GG. Dimethyl labeling, along with LC-MS/MS, effectively differentiated α- and γ-glutamyl peptides, revealing the presence of several γ-glutamyl peptides known to possess kokumi and anti-inflammatory activities, including γ-Glu-Phe and γ-Glu-Tyr in chickpeas aquafaba and γ-Glu-S-methyl-Cys and γ-Glu-Leu in beans aquafaba. This work uncovered unique bioactive peptides and oligosaccharides in aquafaba, helping promote its valorization, food system sustainability, and future health-promoting claims.
Collapse
Affiliation(s)
- Yu-Ping Huang
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| | - Chad Masarweh
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| | - Bruna Paviani
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| | - David A Mills
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| |
Collapse
|
2
|
Chen P, Zeng X, Bai W, Yang J, Sun B, Zhang Y. Gamma-glutamylation of beef protein hydrolysates to improve its overall taste and functions of gastro-intestinal hormone (CCK and GLP-1) pro-secretion and anti-inflammation. Food Chem 2024; 452:139466. [PMID: 38735106 DOI: 10.1016/j.foodchem.2024.139466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/13/2024] [Accepted: 04/21/2024] [Indexed: 05/14/2024]
Abstract
γ-Glutamylation of beef protein hydrolysate (BPH) by L-glutaminase was carried out to improve the taste, as well as enhance the stimulating effect of gastrointestinal hormone (CCK and GLP-1) secretion and the anti-inflammatory property. Results of sensory evaluation showed that the kokumi taste, umaminess, saltiness of the γ-glutamylated product (γ-GBPH) were significantly higher (p < 0.05), whilst the bitterness was remarkably decreased (p < 0.05) than that of BPH. γ-GBPH had a better promoting effect (p < 0.05) on CCK and GLP-1 secretion and a higher inhibition (p < 0.05) on TNF-α and IL-8 production than BPH in vitro cell experiments. In γ-GBPH, 15 γ-Glutamylated amino acids (γ-[Glu](n =1/2)-AAs) and 10 γ-Glutamyl-tripeptide (γ-Glu-AA-AAs) were synthesized from the bitter amino acids and bitter peptides, respectively, and their total production yield was 140.01-170.46 mg/g and 149.06 mg/g, respectively. The synthesized γ-Glu-AA-AAs entered the binding pocket of the calcium-sensitive receptor (CaSR), and they all interacted with three reported amino acid residues (Ser147, Ala168, and Ser170) of CaSR.
Collapse
Affiliation(s)
- Peiwen Chen
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Juan Yang
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| |
Collapse
|
3
|
He W, Huang X, Kelimu A, Li W, Cui C. Streamlined Efficient Synthesis and Antioxidant Activity of γ-[Glutamyl] (n≥1)-tryptophan Peptides by Glutaminase from Bacillus amyloliquefaciens. Molecules 2023; 28:4944. [PMID: 37446606 DOI: 10.3390/molecules28134944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
As a group of naturally occurring peptides in various foods, γ-glutamyl peptides possess a unique Kokumi taste and health benefits. However, few studies have focused on the functionality of γ-glutamyl peptides. In this study, the γ-[glutamyl] (n=1, 2, 3)-tryptophan peptides were synthesized from a solution of glutamine (Gln) and tryptophan (Trp) employing L-glutaminase from Bacillus amyloliquefaciens. Four different γ-glutamyl peptides were identified from the reaction mixture by UPLC-Q-TOF-MS/MS. Under optimal conditions of pH 10, 37 °C, 3 h, 0.1 mol/L Gln: 0.1 mol/L Trp = 1:3, and glutaminase at 0.1% (m/v), the yields of γ-l-glutamyl-l-tryptophan (γ-EW), γ-l-glutamyl-γ-l-glutamyl-l-tryptophan (γ-EEW) and γ-l-glutamyl-γ-l-glutamyl-γ-l-glutamyl-l-tryptophan (γ-EEEW) were 51.02%, 26.12% and 1.91% respectively. The antioxidant properties of the reaction mixture and the two peptides (γ-EW, γ-EEW) identified from the reaction media were further compared. Results showed that γ-EW exhibited the highest DPPH•, ABTS•+ and O2•--scavenging activity (EC50 = 0.2999 mg/mL, 67.6597 μg/mL and 5.99 mg/mL, respectively) and reducing power (EC50 = 4.61 mg/mL), while γ-EEW demonstrated the highest iron-chelating activity (76.22%). Thus, the synthesized mixture may be used as a potential source of antioxidant peptides for food and nutraceutical applications.
Collapse
Affiliation(s)
- Wenjiang He
- Infinitus (China) Co., Ltd., Guangzhou 510640, China
| | - Xiaoling Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Abulimiti Kelimu
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Nongda East Road 311, Urumqi 830052, China
| | - Wenzhi Li
- Infinitus (China) Co., Ltd., Guangzhou 510640, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
Li Q, Zhang L, Lametsch R. Increase of Kokumi γ-Glutamyl Peptides in Porcine Hemoglobin Hydrolysate Using Bacterial γ-Glutamyltransferase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15894-15902. [PMID: 36473160 DOI: 10.1021/acs.jafc.2c07045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The kokumi sensation of protein hydrolysates could be enhanced by γ-glutamylation through forming a series of γ-glutamyl di- and tri-peptides. In this study, porcine hemoglobin hydrolysate was γ-glutamylated using enzymes from Bacillus amyloliquefaciens (Ba) or Bacillus licheniformis (Bl), which are sold as glutaminases but identified as γ-glutamyltransferases (GGTs). To yield more γ-glutamyl peptides, reaction conditions were optimized in terms of GGT source (BaGGT and BlGGT), substrate concentration (10, 20, and 40%), reaction time (3, 6, 12, and 24 h), and glutamine supplementation (20, 40, and 80 mM). Results showed that both the GGTs had the highest transpeptidase activity at similar pH values but different temperatures. In addition, BaGGT had stronger catalytic ability to form γ-glutamyl dipeptides, while BlGGT was more capable to generate γ-Glu-Val-Gly. Adding glutamine was more efficient to obtain more target peptides than adjusting the hydrolysate concentration and reaction time. This study contributes to the valorization of animal side streams.
Collapse
Affiliation(s)
- Qian Li
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| | - Longteng Zhang
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| | - René Lametsch
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| |
Collapse
|
5
|
Guha S, Majumder K. Comprehensive Review of γ-Glutamyl Peptides (γ-GPs) and Their Effect on Inflammation Concerning Cardiovascular Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7851-7870. [PMID: 35727887 DOI: 10.1021/acs.jafc.2c01712] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
γ-Glutamyl peptides (γ-GPs) are a group of peptides naturally found in various food sources. The unique γ-bond potentially enables them to resist gastrointestinal digestion and offers high stability in vivo with a longer half-life. In recent years, these peptides have caught researchers' attention due to their ability to impart kokumi taste and elicit various physiological functions via the allosteric activation of the calcium-sensing receptor (CaSR). This review discusses the various food sources of γ-glutamyl peptides, different synthesis modes, allosteric activation of CaSR for taste perception, and associated multiple biological functions they can exhibit, with a special emphasis on their role in modulating chronic inflammation concerning cardiovascular health.
Collapse
Affiliation(s)
- Snigdha Guha
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Kaustav Majumder
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
6
|
Qin D, Bo W, Zheng X, Hao Y, Li B, Zheng J, Liang G. DFBP: A Comprehensive Database of Food-Derived Bioactive Peptides for Peptidomics Research. Bioinformatics 2022; 38:3275-3280. [PMID: 35552640 DOI: 10.1093/bioinformatics/btac323] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Food-derived bioactive peptides (FBPs) have demonstrated their significance in pharmaceuticals, diets, and nutraceuticals, benefiting public health and global ecology. While significant efforts have been made to discover FBPs and to elucidate the underlying bioactivity mechanisms, there is lack of a systemic study of sequence-structure-activity relationship of FBPs in a large dataset. RESULTS Here, we construct a database of food-derived bioactive peptides (DFBP), containing a total of 6276 peptide entries in 31 types from different sources. Further, we develop a series of analysis tools for function discovery/repurposing, traceability, multifunctional bioactive exploration, and physiochemical property assessment of peptides. Finally, we apply this database and data-mining techniques to discover new FBPs as potential drugs for cardiovascular diseases. The DFBP serves as a useful platform for not only the fundamental understanding of sequence-structure-activity of FBPs, but also the design, discovery, and repurposing of peptide-based drugs, vaccines, materials, and food ingredients. AVAILABILITY AND IMPLEMENTATION DFBP service can be accessed freely via http://www.cqudfbp.net/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dongya Qin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Weichen Bo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Xin Zheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chingqing, 401331, China
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chingqing, 401331, China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio, 44325, USA
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
7
|
Takakura Y, Arai S, Kanaori K, Suzuki H. Development of Enzymatic Synthesis of γ-Glutamylcarnosine and Its Effects on Taste. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:592-597. [PMID: 34981936 DOI: 10.1021/acs.jafc.1c06965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
γ-Glutamyl peptides have amide bonds between the γ-carboxy group of glutamic acid and the amino group of amino acids or peptides. Some of these γ-glutamyl peptides are known as kokumi substances. Kokumi substances enhance the taste, mouthfulness, thickness, and continuity of the dish. γ-Glutamylcarnosine (γ-l-glutamyl-β-alanyl-l-histidine) is a γ-glutamyl peptide, and this peptide has been suggested as a kokumi substance; however, its effects on taste have not been evaluated directly. As γ-glutamylcarnosine is not available commercially, the conditions for its enzymatic synthesis using a γ-glutamyltranspeptidation reaction of γ-glutamyltranspeptidase of Escherichia coli was optimized. The synthesized peptide was purified with a Dowex 1 × 8 column, and its structure was identified by mass spectrometry and NMR spectroscopy. This is the first report of the enzymatic synthesis of γ-glutamylcarnosine. Using this purified preparation, its effects on the sense of taste were investigated. However, the effects of γ-glutamylcarnosine on the sense of taste were not detected except for increased bitterness.
Collapse
|
8
|
Somma V, Calvio C, Rabuffetti M, Rama E, Speranza G, Morelli CF. An overall framework for the E. coli γ-glutamyltransferase-catalyzed transpeptidation reactions. Bioorg Chem 2021; 115:105217. [PMID: 34364051 DOI: 10.1016/j.bioorg.2021.105217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
γ-Glutamyl derivatives of proteinogenic or modified amino acids raise considerable interest as flavor enhancers or biologically active compounds. However, their supply, on a large scale and at reasonable costs, remains challenging. Enzymatic synthesis has been recognized as a possible affordable alternative with respect to both isolation procedures from natural sources, burdened by low-yield and by the requirement of massive amount of starting material, and chemical synthesis, inconvenient because of the need of protection/deprotection steps. The E. coli γ-glutamyltransferase (Ec-GGT) has already been proposed as a biocatalyst for the synthesis of various γ-glutamyl derivatives. However, enzymatic syntheses using this enzyme usually provide the desired products in limited yield. Hydrolysis and autotranspeptidation of the donor substrate have been identified as the side reactions affecting the final yield of the catalytic process. In addition, experimental conditions need to be specifically adjusted for each acceptor substrate. Substrate specificity and the fine characterization of the activities exerted by the enzyme over time has so far escaped rationalization. In this work, reactions catalyzed by Ec-GGT between the γ-glutamyl donor glutamine and several representative acceptor amino acids have been finely analyzed with the identification of single reaction products over time. This approach allowed to rationalize the effect of donor/acceptor molar ratio on the outcome of the transpeptidation reaction and on the distribution of the different byproducts, inferring a general scheme for Ec-GGT-catalyzed reactions. The propensity to react of the different acceptor substrates is in agreement with recent findings obtained using model substrates and further supported by x-ray crystallography and will contribute to characterize the still elusive acceptor binding site of the enzyme.
Collapse
Affiliation(s)
- Valeria Somma
- Department of Chemistry, Università degli Studi di Milano, via Golgi, 19, 20133 Milano, Italy.
| | - Cinzia Calvio
- Department of Biology and Biotechnology, Università degli Studi di Pavia, via Ferrata, 9, 27100 Pavia, Italy.
| | - Marco Rabuffetti
- Department of Chemistry, Università degli Studi di Milano, via Golgi, 19, 20133 Milano, Italy.
| | - Erlinda Rama
- Department of Biology and Biotechnology, Università degli Studi di Pavia, via Ferrata, 9, 27100 Pavia, Italy.
| | - Giovanna Speranza
- Department of Chemistry, Università degli Studi di Milano, via Golgi, 19, 20133 Milano, Italy.
| | - Carlo F Morelli
- Department of Chemistry, Università degli Studi di Milano, via Golgi, 19, 20133 Milano, Italy.
| |
Collapse
|
9
|
Lu Y, Wang J, Soladoye OP, Aluko RE, Fu Y, Zhang Y. Preparation, receptors, bioactivity and bioavailability of γ-glutamyl peptides: A comprehensive review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
WoldemariamYohannes K, Wan Z, Yu Q, Li H, Wei X, Liu Y, Wang J, Sun B. Prebiotic, Probiotic, Antimicrobial, and Functional Food Applications of Bacillus amyloliquefaciens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14709-14727. [PMID: 33280382 DOI: 10.1021/acs.jafc.0c06396] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bacillus amyloliquefaciens belongs to the genus Bacillus and family Baciliaceae. It is ubiquitously found in food, plants, animals, soil, and in different environments. In this review, the application of B. amyloliquefaciens in probiotic and prebiotic microbes in fermentation, synthesis, and hydrolysis of food compounds is discussed as well as further insights into its potential application and gaps. B. amyloliquefaciens is also a potential microbe in the synthesis of bioactive compounds including peptides and exopolysaccharides. In addition, it can synthesize antimicrobial compounds (e.g., Fengycin, and Bacillomycin Lb), which makes its novelty in the food sector greater. Moreover, it imparts and improves the functional, sensory, and shelf life of the end products. The hydrolysis of complex compounds including insoluble proteins, carbohydrates, fibers, hemicellulose, and lignans also shows that B. amyloliquefaciens is a multifunctional and potential microbe which can be applied in the food industry and in functional food processing.
Collapse
Affiliation(s)
- Kalekristos WoldemariamYohannes
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zhen Wan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qinglin Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hongyan Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
11
|
Xiang H, Waterhouse DS, Liu P, Waterhouse GI, Li J, Cui C. Pancreatic lipase-inhibiting protein hydrolysate and peptides from seabuckthorn seed meal: Preparation optimization and inhibitory mechanism. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Li Q, Zhang L, Lametsch R. Current progress in kokumi-active peptides, evaluation and preparation methods: a review. Crit Rev Food Sci Nutr 2020; 62:1230-1241. [DOI: 10.1080/10408398.2020.1837726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qian Li
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Longteng Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - René Lametsch
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
13
|
Synthesis of γ-Glutamyl Derivatives of Sulfur-Containing Amino Acids in a Multigram Scale via a Two-Step, One-Pot Procedure. MOLBANK 2020. [DOI: 10.3390/m1147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
γ-Glutamyl derivatives of sulfur amino acids have been prepared in multigram scale starting from readily available starting materials. The synthesis comprises two one-pot operations, both consisting of two reactions. In the first operation, N-phtaloyl-l-glutamic acid anhydride is obtained from l-glutamic acid and phtalic anhydride. In the second one, N-phtaloyl-l-glutamic acid anhydride is used to acylate amino acids and the N-phtaloyl protecting group is removed. The described approach offers a viable entry to γ-glutamyl derivatives of sulfur-containing amino acids with flavor-enhancer and nutraceutical properties.
Collapse
|
14
|
Zhu X, Sun-Waterhouse D, Tao Q, Li W, Shu D, Cui C. The enhanced serotonin (5-HT) synthesis and anti-oxidative roles of Trp oligopeptide in combating anxious depression C57BL/6 mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
15
|
Feasibility of synthesizing γ-[Glu] -Gln using high solid concentrations and glutaminase from Bacillus amyloliquefaciens as the catalyst. Food Chem 2020; 310:125920. [DOI: 10.1016/j.foodchem.2019.125920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 02/05/2023]
|
16
|
Lin J, Sun-Waterhouse D, Cui C, Lu H. Increasing antioxidant activities of the glutamine-cysteine mixture by the glutaminase from Bacillus amyloliquefaciens. Food Chem 2020; 308:125701. [DOI: 10.1016/j.foodchem.2019.125701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/17/2022]
|
17
|
Massone M, Calvio C, Rabuffetti M, Speranza G, Morelli CF. Effect of the inserted active-site-covering lid loop on the catalytic activity of a mutant B. subtilis γ-glutamyltransferase (GGT). RSC Adv 2019; 9:34699-34709. [PMID: 35530678 PMCID: PMC9073855 DOI: 10.1039/c9ra05941e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/11/2019] [Indexed: 11/24/2022] Open
Abstract
γ-Glutamylpeptides are compounds derived from the acylation of an amino acid or a short peptide by the γ-carboxyl carbon of the side chain of glutamic acid. Due to their altered chemico-physical and organoleptic properties, they may be interesting substitutes or precursors of parent compounds used in pharmaceutical, dietetic and cosmetic formulations. Some of them are naturally occurring flavor enhancers or are endowed with biological activities. Enzymatic approaches to the synthesis of γ-glutamyl derivatives based on the use of γ-glutamyltransferases (GGTs, EC 2.3.2.2) have been proposed, which should be able to alleviate the problems connected with the troublesome and low-yielding extraction from natural sources or the non-economical chemical synthesis, which requires protection/deprotection steps. With the aim of overcoming the current limitations in the use of GGTs as biocatalysts, a mutant GGT was investigated. The mutant GGT was obtained by inserting the active-site-covering lid loop of the E. coli GGT onto the structure of B. subtilis GGT. With respect to the wild-type enzyme, the mutant showed a more demanding substrate specificity and a low hydrolase activity. These results represent an attempt to correlate the structural features of a GGT to its different activities. However, the ability of the mutant enzyme to catalyze the subsequent addition of several γ-glutamyl units, inherited by the parent B. subtilis GGT, still represents a limitation to its full application as a biocatalyst for preparative purposes. A mutant γ-glutamyltransferase with improve transpeptidase activity was obtained by inserting the active site-covering lid loop on an enzyme naturally lacking it.![]()
Collapse
Affiliation(s)
- Michela Massone
- Department of Chemistry
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Cinzia Calvio
- Department of Biology and Biotechnology
- Università degli Studi di Pavia
- 27100 Pavia
- Italy
| | - Marco Rabuffetti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Giovanna Speranza
- Department of Chemistry
- Università degli Studi di Milano
- 20133 Milano
- Italy
- Istituto di Scienze e Tecnologie Molecolari (INSTM)
| | - Carlo F. Morelli
- Department of Chemistry
- Università degli Studi di Milano
- 20133 Milano
- Italy
| |
Collapse
|