1
|
Wu H, Wu Y, Cui Z, Hu L. Nutraceutical delivery systems to improve the bioaccessibility and bioavailability of lycopene: A review. Crit Rev Food Sci Nutr 2024; 64:6361-6379. [PMID: 36655428 DOI: 10.1080/10408398.2023.2168249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lycopene is a promising biological functional component with various biological activities and excellent pharmacological activities. However, its low water solubility and stability lead to low oral bioavailability, which limits its edible and medicinal research. Then, it is necessary to explore effective methods to protect lycopene from destruction and further exploit its potential benefits. The absorption of lycopene in vivo is affected by solubility, stability, isomer type, emulsifying ability, difficulty in forming micelles in vivo, and interaction with food components. Emulsions, pickering emulsions, micelles, liposomes, bigels, beasds, solid dispersions, microcapsules, nanoparticles, electrospinning and other drug delivery systems can be used as good strategies to improve the stability and bioavailability of lycopene. In this paper, the absorption process of lycopene in vivo and the factors affecting its bioavailability were discussed, and the preparation strategies for improving the stability, bioavailability, and health benefits of lycopene were reviewed, to provide some clues and references for the full utilization of lycopene in the field of health. However, there are still various unresolved mysteries regarding the metabolism of lycopene. The safety and in vivo studies of various preparations should be further explored, and the above technologies also face the challenge of industrial production.
Collapse
Affiliation(s)
- Haonan Wu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, School of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Yumeng Wu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, School of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Zhe Cui
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, School of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Liandong Hu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, School of Pharmaceutical Sciences, Hebei University, Baoding, China
| |
Collapse
|
2
|
Milivojević M, Popović A, Pajić-Lijaković I, Šoštarić I, Kolašinac S, Stevanović ZD. Alginate Gel-Based Carriers for Encapsulation of Carotenoids: On Challenges and Applications. Gels 2023; 9:620. [PMID: 37623075 PMCID: PMC10454207 DOI: 10.3390/gels9080620] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Sodium alginate is one of the most interesting and the most investigated and applied biopolymers due to its advantageous properties. Among them, easy, simple, mild, rapid, non-toxic gelation by divalent cations is the most important. In addition, it is abundant, low-cost, eco-friendly, bio-compatible, bio-adhesive, biodegradable, stable, etc. All those properties were systematically considered within this review. Carotenoids are functional components in the human diet with plenty of health benefits. However, their sensitivity to environmental and process stresses, chemical instability, easy oxidation, low water solubility, and bioavailability limit their food and pharmaceutical applications. Encapsulation may help in overcoming these limitations and within this review, the role of alginate-based encapsulation systems in improving the stability and bioavailability of carotenoids is explored. It may be concluded that all alginate-based systems increase carotenoid stability, but only those of micro- and nano-size, as well as emulsion-based, may improve their low bioaccessibility. In addition, the incorporation of other biopolymers may further improve encapsulation system properties. Furthermore, the main techniques for evaluating the encapsulation are briefly considered. This review critically and profoundly explains the role of alginates in improving the encapsulation process of carotenoids, suggesting the best alternatives for those systems. Moreover, it provides a comprehensive cover of recent advances in this field.
Collapse
Affiliation(s)
- Milan Milivojević
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Aleksandra Popović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Ivana Pajić-Lijaković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Ivan Šoštarić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Stefan Kolašinac
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | | |
Collapse
|
3
|
Alginate hydrogel beads containing Thymus daenensis essential oils/Glycyrrhizic acid loaded in β-cyclodextrin. Investigation of structural, antioxidant/antimicrobial properties and release assessment. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117738] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Bockuviene A, Zalneravicius R, Sereikaite J. Preparation, characterization and stability investigation of lycopene-chitooligosaccharides complexes. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Hajikhani M, Emam Djomeh Z, Askari G. Lycopene loaded polylactic acid (PLA) and PLA/copolymer electrospun nanofibers, synthesis, characterization, and control release. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mehdi Hajikhani
- Transport Phenomena Laboratory (TPL) Department of Food Science and Technology University College of Agriculture and Natural Resources University of Tehran Karaj Iran
| | - Zahra Emam Djomeh
- Transport Phenomena Laboratory (TPL) Department of Food Science and Technology University College of Agriculture and Natural Resources University of Tehran Karaj Iran
| | - Gholamreza Askari
- Transport Phenomena Laboratory (TPL) Department of Food Science and Technology University College of Agriculture and Natural Resources University of Tehran Karaj Iran
| |
Collapse
|
6
|
Khalil MNA, Farghal HH, Farag MA. Outgoing and potential trends of composition, health benefits, juice production and waste management of the multi-faceted Grapefruit Citrus Χ paradisi: A comprehensive review for maximizing its value. Crit Rev Food Sci Nutr 2020; 62:935-956. [PMID: 33054326 DOI: 10.1080/10408398.2020.1830364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Grapefruit (GF) Citrus Χ paradisi Macfad (F. Rutaceae) is one of the major citrus fruits that encompass a myriad of bioactive chemicals and most unique among citrus fruits. Nevertheless, no study has yet to assess comprehensively its multitudinous constituents, health benefits, and valuable waste products. Hereto, the present review provides an updated comprehensive review on the different aspects of GF, its juice production, waste valorization, enhancement of its byproducts quality, and compared to other citrus fruits. Grapefruit uniqueness among other citrus fruits stands from its unique taste, flavor, and underlying complex chemical composition. Despite limonene abundance in peel oil and grapefruit juice (GFJ) aroma, nootkatone and sulfur compounds are the key determinants of its flavor, whereas flavanones contribute to its bitter taste and in conjunction with limonoids. Different postharvest treatments and juice processing are reviewed and in context to its influence on final product quality and or biological effects. Flavanones, furanocoumarins, and limonoids appear as the most prominent in GF drug interactions affecting its metabolism and or excretion. Valorization of GF peel is overviewed for its utilization as biosrobent, its oil in aromatherapy, limonene as antimicrobial or in cosmetics, fruit pectin for bioethanol production, or as biosorbent, and peel phenolics biotransformation. The present review capitalizes on all of the aforementioned aspects in GF and further explore novel aspects of its juice quality presenting the full potential of this valued multi-faceted citrus fruit.
Collapse
Affiliation(s)
- Mohammed N A Khalil
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Hebatullah H Farghal
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
7
|
Aguirre Calvo TR, Santagapita PR. Freezing and drying of pink grapefruit-lycopene encapsulated in Ca(II)-alginate beads containing galactomannans. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:3264-3271. [PMID: 31274893 PMCID: PMC6582125 DOI: 10.1007/s13197-019-03783-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 02/03/2023]
Abstract
Lycopene extracted from pink grapefruit was encapsulated on Ca(II)-alginate beads with the addition of trehalose and galactomannans to improve its stability against freezing and drying. Three galactomannans of different physicochemical properties were studied since their inclusion affects both loading efficiency and release of lycopene in wet beads; however, there is no information about their performance during freezing and dehydration operations. The remaining lycopene and its stability towards isomerization were analyzed in beads subjected to continuous freezing, freezing/thawing cycles and vacuum- and freeze-drying. Isothermal crystallization studies were conducted by LF-NMR and related to beads formulation and lycopene stability. In the absence of excipients, lycopene was severely affected by all the treatments, retaining less than 20% of the original content. Alginate beads containing trehalose with guar gum protected more than 80% of the lycopene regardless of the employed freezing or drying methods. These beads concomitantly showed higher solid fraction than the other two galactomannans-containing systems, displaying guar gum ability to associate water. On the other hand, the addition of vinal gum affected lycopene stability (between 40 and 60% were recovered after treatments), even compromising the positive effect of a well-established cryoprotectant as trehalose. Thus, the addition of secondary excipients should be carefully conducted. The differences among galactomannans could be related to the substitution degree of the polymer chains, affecting the overall systems interactions. These results can contribute to excipients selection for the encapsulation of labile biomolecules in Ca(II)-alginate beads subjected to freezing and drying.
Collapse
Affiliation(s)
- Tatiana Rocio Aguirre Calvo
- Departamentos de Industrias y Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Patricio R. Santagapita
- Departamentos de Industrias y Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|