1
|
Zhang L, Wang M, Song H, Liang W, Wang X, Sun J, Wang D. Changes of microbial communities and metabolites in the fermentation of persimmon vinegar by bioaugmentation fermentation. Food Microbiol 2024; 122:104565. [PMID: 38839213 DOI: 10.1016/j.fm.2024.104565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
To evaluate the effects of bioaugmentation fermentation inoculated with one ester-producing strain (Wickerhamomyces anomalus ZX-1) and two strains of lactic acid bacteria (Lactobacillus plantarum CGMCC 24035 and Lactobacillus acidophilus R2) for improving the flavor of persimmon vinegar, microbial community, flavor compounds and metabolites were analyzed. The results of microbial diversity analysis showed that bioaugmentation fermentation significantly increased the abundance of Lactobacillus, Saccharomyces, Pichia and Wickerhamomyces, while the abundance of Acetobacter, Apiotrichum, Delftia, Komagataeibacter, Kregervanrija and Aspergillus significantly decreased. After bioaugmentation fermentation, the taste was softer, and the sensory irritancy of acetic acid was significantly reduced. The analysis of HS-SPME-GC-MS and untargeted metabolomics based on LC-MS/MS showed that the contents of citric acid, lactic acid, malic acid, ethyl lactate, methyl acetate, isocitrate, acetoin and 2,3-butanediol were significantly increased. By multivariate analysis, 33 differential metabolites were screened out to construct the correlation between the differential metabolites and microorganisms. Pearson correlation analysis showed that methyl acetate, ethyl lactate, betaine, aconitic acid, acetoin, 2,3-butanediol and isocitrate positively associated with Wickerhamomyces and Lactobacillus. The results confirmed that the quality of persimmon vinegar was improved by bioaugmentation fermentation.
Collapse
Affiliation(s)
- Luyao Zhang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China
| | - Mengyang Wang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China
| | - Hairu Song
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China
| | - Weina Liang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China
| | - Xiaotong Wang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China
| | - Jianrui Sun
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China; Henan Engineering Research Center of Food Microbiology, Luoyang, 471023, China
| | - Dahong Wang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China; Henan Engineering Research Center of Food Microbiology, Luoyang, 471023, China.
| |
Collapse
|
2
|
Wan Y, Huang J, Tang Q, Zhang S, Qin H, Dong Y, Wang X, Qiu C, Huang M, Zhang Z, Zhang Y, Zhou R. Characterizing the Contribution of Functional Microbiota Cultures in Pit Mud to the Metabolite Profiles of Fermented Grains. Foods 2024; 13:1597. [PMID: 38890826 PMCID: PMC11171501 DOI: 10.3390/foods13111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/20/2024] Open
Abstract
Elevating the flavor profile of strong flavors Baijiu has always been a focal point in the industry, and pit mud (PM) serves as a crucial flavor contributor in the fermentation process of the fermented grains (FG). This study investigated the influence of wheat flour and bran (MC and FC) as PM culture enrichment media on the microbiota and metabolites of FG, aiming to inform strategies for improving strong-flavor Baijiu flavor. Results showed that adding PM cultures to FG significantly altered its properties: FC enhanced starch degradation to 51.46% and elevated reducing sugar content to 1.60%, while MC increased acidity to 2.11 mmol/10 g. PM cultures also elevated FG's ester content, with increases of 0.36 times for MC-FG60d and 1.48 times for FC-FG60d compared to controls, and ethyl hexanoate rising by 0.91 times and 1.39 times, respectively. Microbial analysis revealed that Lactobacillus constituted over 95% of the Abundant bacteria community, with Kroppenstedtia or Bacillus being predominant among Rare bacteria. Abundant fungi included Rasamsonia, Pichia, and Thermomyces, while Rare fungi consisted of Rhizopus and Malassezia. Metagenomic analysis revealed bacterial dominance, primarily consisting of Lactobacillus and Acetilactobacillus (98.80-99.40%), with metabolic function predictions highlighting genes related to metabolism, especially in MC-FG60d. Predictions from PICRUSt2 suggested control over starch, cellulose degradation, and the TCA cycle by fungal subgroups, while Abundant fungi and bacteria regulated ethanol and lactic acid production. This study highlights the importance of PM cultures in the fermentation process of FG, which is significant for brewing high-quality, strong-flavor Baijiu.
Collapse
Affiliation(s)
- Yingdong Wan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.W.); (J.H.); (Q.T.); (Z.Z.); (Y.Z.)
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.W.); (J.H.); (Q.T.); (Z.Z.); (Y.Z.)
| | - Qiuxiang Tang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.W.); (J.H.); (Q.T.); (Z.Z.); (Y.Z.)
| | - Suyi Zhang
- Luzhou Lao Jiao Co., Ltd., Luzhou 646699, China; (S.Z.); (H.Q.); (Y.D.); (X.W.); (C.Q.); (M.H.)
| | - Hui Qin
- Luzhou Lao Jiao Co., Ltd., Luzhou 646699, China; (S.Z.); (H.Q.); (Y.D.); (X.W.); (C.Q.); (M.H.)
| | - Yi Dong
- Luzhou Lao Jiao Co., Ltd., Luzhou 646699, China; (S.Z.); (H.Q.); (Y.D.); (X.W.); (C.Q.); (M.H.)
| | - Xiaojun Wang
- Luzhou Lao Jiao Co., Ltd., Luzhou 646699, China; (S.Z.); (H.Q.); (Y.D.); (X.W.); (C.Q.); (M.H.)
| | - Chuanfeng Qiu
- Luzhou Lao Jiao Co., Ltd., Luzhou 646699, China; (S.Z.); (H.Q.); (Y.D.); (X.W.); (C.Q.); (M.H.)
| | - Mengyang Huang
- Luzhou Lao Jiao Co., Ltd., Luzhou 646699, China; (S.Z.); (H.Q.); (Y.D.); (X.W.); (C.Q.); (M.H.)
| | - Zhu Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.W.); (J.H.); (Q.T.); (Z.Z.); (Y.Z.)
| | - Yi Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.W.); (J.H.); (Q.T.); (Z.Z.); (Y.Z.)
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.W.); (J.H.); (Q.T.); (Z.Z.); (Y.Z.)
| |
Collapse
|
3
|
Leng W, Li W, Li Y, Lu H, Li X, Gao R. Insight investigation into the response pattern of microbial assembly succession and volatile profiles during the brewing of sauce-flavor baijiu based on bioaugmentation. J Biosci Bioeng 2024; 137:211-220. [PMID: 38272723 DOI: 10.1016/j.jbiosc.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/26/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
To improve the flavor profile and sensory quality of baijiu, the utilization of bioaugmented fermentation inoculated with functional microbiota normally serves as an effective method for directional regulation during the baijiu fermentation process. In this study, a systematic analysis of the succession patterns and volatile flavor compound profiles of microbial communities was carried out by high-throughput sequencing and solid-phase microextraction gas chromatography-mass spectrometry, respectively. The results demonstrated that the Saccharomyces cerevisiae YS222-related bioaugmentation clearly altered the microbial composition, particularly the assembly of bacteria, and promoted the quantity of the most volatile flavoring compounds, including alcohols, esters, and pyrazines. In addition, the correlation analysis showed that Saccharomyces and Lactobacillus in the augmented group were the main biomarkers associated with the dynamics of microbial community and greatly contributed to the brewing of sauce-flavor baijiu, which congruent with the outcomes of the enrichment analysis of integrated metabolic pathway. Thus, this work is beneficial for promoting the quality of baijiu and will serve as a useful reference for clarifying the possible mechanism of augmented fermentation on flavor development.
Collapse
Affiliation(s)
- Weijun Leng
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Weiwei Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China
| | - Ying Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongyun Lu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China
| | - Xiuting Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China.
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Ghadermazi P, Chan SHJ. Microbial interactions from a new perspective: reinforcement learning reveals new insights into microbiome evolution. Bioinformatics 2024; 40:btae003. [PMID: 38212999 PMCID: PMC10799744 DOI: 10.1093/bioinformatics/btae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/13/2024] Open
Abstract
MOTIVATION Microbes are essential part of all ecosystems, influencing material flow and shaping their surroundings. Metabolic modeling has been a useful tool and provided tremendous insights into microbial community metabolism. However, current methods based on flux balance analysis (FBA) usually fail to predict metabolic and regulatory strategies that lead to long-term survival and stability especially in heterogenous communities. RESULTS Here, we introduce a novel reinforcement learning algorithm, Self-Playing Microbes in Dynamic FBA, which treats microbial metabolism as a decision-making process, allowing individual microbial agents to evolve by learning and adapting metabolic strategies for enhanced long-term fitness. This algorithm predicts what microbial flux regulation policies will stabilize in the dynamic ecosystem of interest in the presence of other microbes with minimal reliance on predefined strategies. Throughout this article, we present several scenarios wherein our algorithm outperforms existing methods in reproducing outcomes, and we explore the biological significance of these predictions. AVAILABILITY AND IMPLEMENTATION The source code for this article is available at: https://github.com/chan-csu/SPAM-DFBA.
Collapse
Affiliation(s)
- Parsa Ghadermazi
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80521, United States
| | - Siu Hung Joshua Chan
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80521, United States
| |
Collapse
|
5
|
Lv W, Li F, Li C. Effect of inoculated Daqu on the spontaneous fermentation of Chinese liquor. Food Res Int 2023; 173:113321. [PMID: 37803632 DOI: 10.1016/j.foodres.2023.113321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 10/08/2023]
Abstract
Inoculated fermentation is widely used to improve the efficiency and quality of food production. However, it is still unclear how the inoculated multi-species starters influence food fermentation. Here we prepared two different types of Daqu, with/without the inoculation of Bacillus licheniformis in spontaneous Daqu fermentation, and studied their effects on liquor fermentation. These two types of Daqu were different in microbial community, and the inoculated Daqu had significantly higher relative abundance of Bacillus (69.2%) and lower relative abundance of Lactobacillus (3.2%) than those of Daqu without inoculation (Bacillus, 13.5%; Lactobacillus, 14.0%). After using with these two types of Daqu, metatranscriptomic analysis revealed that Kazachstania, Naumovozyma, Saccharomyces, Nakaseomyces and Lactobacillus were the transcriptional active genera during liquor fermentation. The transcription of Lactobacillus decreased on days 10 and 20 in liquor fermentation with the inoculated Daqu. The transcription of Kazachstania, Naumovozyma and Saccharomyces decreased on day 10 but increased on day 20 with the inoculated Daqu. Although lactate dehydrogenase decreased in Lactobacillus, alcohol dehydrogenase, aldehyde dehydrogenase and lactate dehydrogenase increased in Saccharomyces on day 20 in fermentation with inoculated Daqu, it indicated an extended succession of Saccharomyces in liquor fermentation. This would facilitate the increase of ethanol, acetic acid and lactic acid contents in liquor fermentation with inoculated Daqu. This work would be beneficial for improving Chinese liquor fermentation.
Collapse
Affiliation(s)
- Wenzhi Lv
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun, Guizhou, China.
| | - Feng Li
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun, Guizhou, China
| | - Changan Li
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun, Guizhou, China
| |
Collapse
|
6
|
Fu G, Cai W, Dong B, Wan Y, Pan F, Zheng F, Chen Y, Deng M, Huang B. Effects of bio-augmented Daqu on microbial community, aroma compounds and physicochemical parameters of fermented grains during the brewing of Chinese special-flavor baijiu. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:273-282. [PMID: 35859417 DOI: 10.1002/jsfa.12139] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 06/12/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Bio-augmented Daqu is used to improve the microbial community and physicochemical parameters of fermented grains, thus affecting the flavor and quality of baijiu. This study investigated the effects of bio-augmented Daqu inoculated with Aspergillus niger NCUF413.1 and Saccharomyces cerevisiae NCUF304.1 on the microbial community, aroma compounds, and physicochemical parameters of fermented grains during special-flavor baijiu brewing. RESULTS Compared with the control group (CG), the utilization of starch and production of ethanol in the inoculated group (IG) increased by 3.55% and 12.59%, respectively. The use of bio-augmented Daqu changed the bacterial communities. For example, Kroppenstedsia was the dominant bacterial genus (the relative abundance was about 22%) in the CG while Lactobacillus was the main dominant genus (the relative abundance was more than 30%) in the IG on days 20-30. Lactobacillus showed a significant positive correlation with the aroma compounds. The use of bio-augmented Daqu increased the aroma compound content - such as the ethyl heptanoate and ethyl hexanoate content. CONCLUSION The addition of bio-augmented Daqu with A. niger and S. cerevisiae could change microbial communities, resulting in an increase in the yield of ethanol and the aroma compound content of fermented grains, thus improving the quality of baijiu. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guiming Fu
- State Key Laboratory of Food Science and Technology & College of food Science and Technology, Nanchang University, Nanchang, China
| | - Wenqin Cai
- State Key Laboratory of Food Science and Technology & College of food Science and Technology, Nanchang University, Nanchang, China
| | - Biao Dong
- State Key Laboratory of Food Science and Technology & College of food Science and Technology, Nanchang University, Nanchang, China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology & College of food Science and Technology, Nanchang University, Nanchang, China
| | - Fei Pan
- State Key Laboratory of Food Science and Technology & College of food Science and Technology, Nanchang University, Nanchang, China
| | - Fuping Zheng
- Beijing Laboratory of Food Quality and Safety & School of Food and Chemical Engineering, Beijing Technology & Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition & Human Health, Beijing Technology & Business University, Beijing, China
| | - Yanru Chen
- State Key Laboratory of Food Science and Technology & College of food Science and Technology, Nanchang University, Nanchang, China
| | - Mengfei Deng
- State Key Laboratory of Food Science and Technology & College of food Science and Technology, Nanchang University, Nanchang, China
| | - Bingjing Huang
- Zhangshugong Wine and Spirits Co. Ltd, Jiangxi Zhangshu Gongjiu Group Company, Zhangshu, China
| |
Collapse
|
7
|
Tang Q, Chen X, Huang J, Zhang S, Qin H, Dong Y, Wang C, Wang X, Wu C, Jin Y, Zhou R. Mechanism of Enhancing Pyrazines in Daqu via Inoculating Bacillus licheniformis with Strains Specificity. Foods 2023; 12:foods12020304. [PMID: 36673396 PMCID: PMC9858619 DOI: 10.3390/foods12020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Despite the importance of pyrazines in Baijiu flavor, inoculating functional strains to increase the contents of pyrazine in Daqu and how those interact with endogenic communities is not well characterized. The effects of inoculating Bacillus licheniformis with similar metabolic capacity on pyrazine and community structure were assessed in the Daqu complex system and compared with traditional Daqu. The fortification strategy increased the volatile metabolite content of Daqu by 52.40% and the pyrazine content by 655.99%. Meanwhile, results revealed that the pyrazine content in Daqu inoculated isolate J-49 was 2.35-7.41 times higher than isolate J-41. Both isolates have the almost same capability of 2,3-butanediol, a key precursor of pyrazine, in pure cultured systems. Since the membrane fatty acids of isolate J-49 contain unsaturated fatty acids, it enhances the response-ability to withstand complex environmental pressure, resulting in higher pyrazine content. PICRUSt2 suggested that the increase in pyrazine was related to the enzyme expression of nitrogen metabolism significantly increasing, which led to the enrichment of NH4+ and 2,3-butanediol (which increased by 615.89%). These results based on multi-dimensional approaches revealed the effect of functional bacteria enhancement on the attribution of Daqu, laid a methodological foundation regulating the microbial community structure and enhanced the target products by functional strains.
Collapse
Affiliation(s)
- Qiuxiang Tang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaoru Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Suyi Zhang
- Luzhou Laojiao Company Limited, Luzhou 646000, China
| | - Hui Qin
- Luzhou Laojiao Company Limited, Luzhou 646000, China
| | - Yi Dong
- Luzhou Laojiao Company Limited, Luzhou 646000, China
| | - Chao Wang
- Luzhou Laojiao Company Limited, Luzhou 646000, China
| | - Xiaojun Wang
- Luzhou Laojiao Company Limited, Luzhou 646000, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Centre of Solid-State Brewing, Luzhou 646000, China
- Correspondence: ; Tel.: +86-28-85406149
| |
Collapse
|
8
|
Xu P, Yang H, Tian L, Guo Q, Chen H, Wei X, Liu Y, He Z, Zhang J, Luo J, Li D, Guan T. Function and safety evaluation of Staphylococcus epidermidis with high esterase activity isolated from strong flavor Daqu. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
9
|
Cheng W, Chen X, Zhou D, Xiong F. Applications and prospects of the automation of compound flavor baijiu production by solid-state fermentation. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2022-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
Baijiu, the national liquor of China, is produced using traditional solid-state fermentation (SSF). SSF automation during compound flavor baijiu (CFB) production can considerably reduce labor intensity and required manpower, improve the working environment, decrease costs, and increase efficiency. The approaches for SSF automation in CFB production can provide a reference for the automation of SSF in other industries. Therefore, this review compares the traditional and automated processes for jiuqu starter production, SSF, and solid-state distillation during baijiu brewing. Furthermore, specific applications of automation technology and equipment are summarized for each process. The problems and challenges associated with the automation of the process are then detailed and future development directions are proposed. Thus, this review provides an overall introduction to and insight into the developments and challenges in the automation of the CFB brewing process, helping to promote automation in the brewing of other baijiu flavor classes and SSF products.
Collapse
Affiliation(s)
- Wei Cheng
- School of Food Science & Engineering , Shaanxi University of Science & Technology , Xi’an 710021 , P. R. China
- Jinzhongzi Distillery Co., Ltd. , Fuyang 236023 , P. R. China
| | - Xuefeng Chen
- School of Food Science & Engineering , Shaanxi University of Science & Technology , Xi’an 710021 , P. R. China
| | - Duan Zhou
- School of Food Science & Engineering , Shaanxi University of Science & Technology , Xi’an 710021 , P. R. China
| | - Fengkui Xiong
- School of Mechanical & Electrical Engineering , Shaanxi University of Science & Technology , Xi’an 710021 , P. R. China
| |
Collapse
|
10
|
Biocontrol of Geosmin Production by Inoculation of Native Microbiota during the Daqu-Making Process. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Geosmin produced by Streptomyces can cause an earthy off-flavor at trace levels, seriously deteriorating the quality of Chinese liquor. Geosmin was detected during the Daqu (Chinese liquor fermentation starter)-making process, which is a multi-species fermentation process in an open system. Here, biocontrol, using the native microbiota present in Daqu making, was used to control the geosmin contamination. Six native strains were obtained according to their inhibitory effects on Streptomyces and then were inoculated into the Daqu fermentation. After inoculation, the content of geosmin decreased by 34.40% (from 7.18 ± 0.13 μg/kg to 4.71 ± 0.30 μg/kg) in the early stage and by 55.20% (from 8.86 ± 1.54 μg/kg to 3.97 ± 0.78 μg/kg) in the late stage. High-throughput sequencing combined with an interaction network revealed that the fungal community played an important role in the early stage and the correlation between Pichia and Streptomyces changed from the original indirect promotion to direct inhibition after inoculation. This study provides an effective strategy for controlling geosmin contamination in Daqu via precisely regulating microbial communities, as well as highlights the potential of biocontrol for controlling off-flavor chemicals at trace levels in complex fermentation systems.
Collapse
|
11
|
Kang J, Xue Y, Chen X, Han BZ. Integrated multi-omics approaches to understand microbiome assembly in Jiuqu, a mixed-culture starter. Compr Rev Food Sci Food Saf 2022; 21:4076-4107. [PMID: 36038529 DOI: 10.1111/1541-4337.13025] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/28/2023]
Abstract
The use of Jiuqu as a saccharifying and fermenting starter in the production of fermented foods is a very old biotechnological process that can be traced back to ancient times. Jiuqu harbors a hub of microbial communities, in which prokaryotes and eukaryotes cohabit, interact, and communicate. However, the spontaneous fermentation based on empirical processing hardly guarantees the stable assembly of the microbiome and a standardized quality of Jiuqu. This review describes the state of the art, limitations, and challenges towards the application of traditional and omics-based technology to study the Jiuqu microbiome and highlights the need for integrating meta-omics data. In addition, we review the varieties of Jiuqu and their production processes, with particular attention to factors shaping the microbiota of Jiuqu. Then, the potentials of integrated omics approaches used in Jiuqu research are examined in order to understand the assembly of the microbiome and improve the quality of the products. A variety of different approaches, including molecular and mass spectrometry-based techniques, have led to scientific advances in the analysis of the complex ecosystem of Jiuqu. To date, the extensive research on Jiuqu has mainly focused on the microbial community diversity, flavor profiles, and biochemical characteristics. An integrative approach to large-scale omics datasets and cultivated microbiota has great potential for understanding the interrelation of the Jiuqu microbiome. Further research on the Jiuqu microbiome may explain the inherent property of compositional stability and stable performance of a complex microbiota coping with environmental perturbations and provide important insights to reconstruct synthetic microbiota and develop modern intelligent manufacturing procedures for Jiuqu.
Collapse
Affiliation(s)
- Jiamu Kang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yansong Xue
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoxue Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Bei-Zhong Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Tang J, Chen J, Chen D, Li Z, Huang D, Luo H. Structural Characteristics and Formation Mechanism of Microbiota Related to Fermentation Ability and Alcohol Production Ability in Nongxiang Daqu. Foods 2022; 11:foods11172602. [PMID: 36076788 PMCID: PMC9455232 DOI: 10.3390/foods11172602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
Fermentation ability and alcohol production ability are important quality indicators of Chinese liquor Daqu, reflecting microbial growth and metabolic capacity and ethanol production capacity of Daqu microbiota, respectively. However, information on the microbial community related to the fermentation ability and alcohol production ability is unclear. In this study, fermentation functional microbiota (FFM) and alcohol functional microbiota (AFM) were obtained by correlating fermentation ability and alcohol production ability with Daqu microbiota. FFM and AFM consisted of 50 and 49 genera, respectively, which were basically the same at the phylum level but differed at the genus level. Correlation analysis showed that FFM and AFM were mainly affected by moisture, acidity, and humidity in the early stage of Daqu fermentation, and oxygen content was a critical factor for microbial succession in the middle stage of fermentation. FFM and AFM had commensal or synergistic interactions with multiple microbes. Function predictions indicated that fermentation functional bacterial microbiota was active in product synthesis and transport-related metabolic functions, and alcohol functional bacterial microbiota was very active in raw material utilization and its own metabolic synthesis. This study reveals the structural characteristics and formation mechanism of FFM and AFM, which is important for control of Daqu quality.
Collapse
Affiliation(s)
- Jie Tang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Jie Chen
- Yibin Nanxi Wine Co., Ltd., Yibin 644000, China
| | - Deming Chen
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Zijian Li
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin 644000, China
| | - Dan Huang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin 644000, China
| | - Huibo Luo
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin 644000, China
- Correspondence: or
| |
Collapse
|
13
|
Mao F, Huang J, Zhou R, Qin H, Zhang S, Cai X, Qiu C. Effects of Different Daqu on Microbial Community Domestication and Metabolites in Nongxiang Baijiu Brewing Microecosystem. Front Microbiol 2022; 13:939904. [PMID: 35847071 PMCID: PMC9279870 DOI: 10.3389/fmicb.2022.939904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/08/2022] [Indexed: 12/04/2022] Open
Abstract
The quality and yield of the fresh Baijiu mainly depend on the activity of pit mud (PM) and the quality of Daqu. However, the cultivation of PM is a long-term process, and high-quality Daqu can change the community structure of fermented grain (FG) and accelerate the evolution of PM communities. The present research aimed to investigate the four different types of Daqu on the FG-fermenting microbial community structure and metabolites and their interphase interactions with PM. These results show that Kroppenstedtia in the bacterial community of Taikong Daqu (TK) was positively correlated with ethyl caproate, which significantly increased the content of FG volatile metabolites, especially lipid components, and facilitated the accelerated evolution of Methanobacteriales and Methanosarcinales in PM. Bacillus has a high relative abundance in Qianghua Daqu (QH), which shows obvious advantages to improving the alcoholic strength of FG and contributing to increasing the abundance of Methanomicrobiales in PM. Qianghua and traditional-mixed Daqu (HH) have a similar bacterial composition to QH and a similar fungal composition to traditional Daqu (DZ), and thus also showed the advantage of increased yield, but the volatile flavor metabolites produced were not as dominant as DZ. β-diversity analysis showed that in TK fermentation systems, FG is more likely to domesticate the structure of PM microorganisms. These results indicated that the interaction between microbial communities in Baijiu fermentation niches was significantly influenced by different Daqu. It can not only enhance the key volatiles in FG but also accelerate the evolving direction of the community in PM. Daqu fortified by functional genera or microbiota can evolve a community structure more suitable for Baijiu fermentation. The microbiota composition and interaction between the communities in both Daqu and PM significantly impacts the yield and quality of the base liquor.
Collapse
Affiliation(s)
- Fengjiao Mao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- National Engineering Laboratory of Clean Technology for Leather Manufacture, Sichuan University, Chengdu, China
- National Engineering Research Centre of Solid-State Brewing, Luzhou, China
- *Correspondence: Rongqing Zhou,
| | - Hui Qin
- Lu Zhou Lao Jiao Co., Ltd., Luzhou, China
| | - Suyi Zhang
- Lu Zhou Lao Jiao Co., Ltd., Luzhou, China
| | - Xiaobo Cai
- Lu Zhou Lao Jiao Co., Ltd., Luzhou, China
| | | |
Collapse
|
14
|
Shi H, Zhou X, Yao Y, Qu A, Ding K, Zhao G, Liu SQ. Insights into the microbiota and driving forces to control the quality of vinegar. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Fu GM, Deng MF, Chen Y, Chen YR, Wu SW, Lin P, Huang BJ, Liu CM, Wan Y. Analysis of microbial community, physiochemical indices, and volatile compounds of Chinese te-flavor baijiu daqu produced in different seasons. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6525-6532. [PMID: 34002396 DOI: 10.1002/jsfa.11324] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/17/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Chinese te-flavor baijiu (CTF), the most famous Chinese baijiu in Jiangxi province, China, is made from a unique daqu. Its characteristic style is closely related to the daqu used for fermentation. However, current studies on the effects of different production seasons on microbial communities, physicochemical indices, and volatile compounds in CTF daqu are very rare. RESULTS The relationships of microbial communities, physicochemical indices, and volatile compounds in CTF daqu produced in summer (July and August) and autumn (September and October) were studied. The results of Illumina MiSeq sequencing indicated that there was greater bacterial diversity in the CTF daqu-7 (produced in July) and CTF daqu-8 (produced in August) and greater fungal diversity in the CTF daqu-9 (produced in September) and CTF daqu-10 (produced in October). The physicochemical indices of CTF daqu produced in different seasons were significantly different. It was determined that CTF daqu-9 had the highest esterification and liquefaction abilities. A total of 44 volatile compounds, including alcohols, esters, aldehydes, and ketones were identified in CTF daqu produced during different seasons. Among them, CTF daqu-9 had the greatest alcohol content. CONCLUSION September (early autumn) is the best production period for CTF daqu. The results of the study provide a theoretical basis for the standardized and uniform production of Chinese baijiu. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gui-Ming Fu
- State Key Laboratory of Food Science and Technology & College of food Science and Technology, Nanchang University, Nanchang, China
| | - Meng-Fei Deng
- State Key Laboratory of Food Science and Technology & College of food Science and Technology, Nanchang University, Nanchang, China
| | - Yan Chen
- State Key Laboratory of Food Science and Technology & College of food Science and Technology, Nanchang University, Nanchang, China
| | - Yan-Ru Chen
- State Key Laboratory of Food Science and Technology & College of food Science and Technology, Nanchang University, Nanchang, China
| | | | - Pei Lin
- Sitir Liquor Co., Ltd, Zhangshu, China
| | | | - Cheng-Mei Liu
- State Key Laboratory of Food Science and Technology & College of food Science and Technology, Nanchang University, Nanchang, China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology & College of food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Ban S, Chen L, Fu S, Wu Q, Xu Y. Modelling and predicting population of core fungi through processing parameters in spontaneous starter (Daqu) fermentation. Int J Food Microbiol 2021; 363:109493. [PMID: 34953345 DOI: 10.1016/j.ijfoodmicro.2021.109493] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/12/2021] [Accepted: 11/22/2021] [Indexed: 11/26/2022]
Abstract
Traditional fermented foods are usually produced by spontaneous fermentation with multiple microorganisms. Environmental factors play important roles in microbial succession. However, it is still unclear how the processing parameters regulate the microbiota during fermentation. Here, we reveal the effects of processing parameters on the core microbiota in spontaneous fermentation of Chinese liquor starter. Rhizopus, Pichia, Wickerhamomyces, Saccharomycopsis, Aspergillus and Saccharomyces were identified as core microbiota using amplicon sequencing and metaproteomics analysis. Fermentation moisture gradually decreased from 34.8% to 14.2%, and fermentation temperature varied between 17.0 °C and 35.3 °C during the fermentation. Mantel test showed that fermentation moisture (P < 0.001) and fermentation temperature (P < 0.05) significantly affected the core microbiota. Moreover, structural equation modelling analysis indicated that fermentation moisture (P < 0.001) and fermentation temperature (P < 0.001) were respectively influenced by the processing parameters, room humidity and room temperature. The succession of Rhizopus, Pichia, Wickerhamomyces, Saccharomycopsis and Aspergillus were significantly affected by room humidity (P < 0.05), and the succession of Saccharomyces was significantly affected by room temperature (P < 0.001). Further, models were constructed to predict the population of core microbiota by room humidity and room temperature, using Gaussian process regression and linear regression (P < 0.05). This work would be beneficial for regulating microorganisms via controlling processing parameters in spontaneous food fermentations.
Collapse
Affiliation(s)
- Shibo Ban
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lingna Chen
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shuangxue Fu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
17
|
Yang L, Fan W, Xu Y. GC × GC-TOF/MS and UPLC-Q-TOF/MS based untargeted metabolomics coupled with physicochemical properties to reveal the characteristics of different type daqus for making soy sauce aroma and flavor type baijiu. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111416] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Zhang Q, Zhao C, Wang X, Li X, Zheng Y, Song J, Xia M, Zhang R, Wang M. Bioaugmentation by Pediococcus acidilactici AAF1-5 Improves the Bacterial Activity and Diversity of Cereal Vinegar Under Solid-State Fermentation. Front Microbiol 2021; 11:603721. [PMID: 33584567 PMCID: PMC7876233 DOI: 10.3389/fmicb.2020.603721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/22/2020] [Indexed: 11/18/2022] Open
Abstract
Bioaugmentation technology may be an effective strategy to improve the solid-state fermentation rate and utilization of raw materials for traditional vinegar production. The relationship between bacteria and fermentation process was analyzed to rationally design and perform bioaugmented solid-state fermentation of the Tianjin Duliu mature vinegar (TDMV). Fermentation process was highly correlated with Acetobacter, Lactobacillus, and Pediococcus contents, which were the core functional microorganisms in TDMV fermentation. Pediococcus acidilactici AAF1-5 was selected from 20 strains to fortify the fermentation due to its acidity and thermal tolerance. Bioaugmentation was performed in the upper layer of TDMV fermentation. P. acidilactici AAF1-5 colonized and then spread into the lower layer to improve the fermentation. Result showed that the fermentation period was 5 days less than that of the control. Meanwhile, the non-volatile acid, lactic acid, amino nitrogen, and reducing sugar contents in the bioaugmented TDMV increased by 53%, 14%, 32%, and 36%, respectively, compared with those in the control. Bioaugmentation with P. acidilactici AAF1-5 not only improved the utilization of starch from 79% to 83% but also increased the bacterial community diversity.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Cuimei Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaobin Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaowei Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Jia Song
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Menglei Xia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Rongzhan Zhang
- Tianjin Tianli Duliu Mature Vinegar Co., Ltd., Tianjin, China
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
19
|
Wang W, Fan G, Li X, Fu Z, Liang X, Sun B. Application of Wickerhamomyces anomalus in Simulated Solid-State Fermentation for Baijiu Production: Changes of Microbial Community Structure and Flavor Metabolism. Front Microbiol 2020; 11:598758. [PMID: 33329488 PMCID: PMC7728721 DOI: 10.3389/fmicb.2020.598758] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Wickerhamomyces anomalus is conducive to the synthesis of ester compounds in brewing the Chinese liquor Baijiu; esters are crucial for the quality of Baijiu. In this study, simulated solid-state fermentation for Baijiu production was used to explore whether artificial addition of W. anomalus could improve the flavor substance in Baijiu, and the underlying mechanisms. Two experimental groups were studied, in which W. anomalus Y3604 (Group A) and YF1503 (Group B) were added, respectively; in the control group (Group C), no W. anomalus was added. Adding strain Y3604 increased the content of esters in fermentation samples, especially ethyl acetate and ethyl caproate, and reduced the content of higher alcohols. Adding strain YF1503 had little effect on the ester content but decreased the content of higher alcohols. The diversity and abundance of prokaryotic genera in Group A and B samples were similar, but there were some differences compared with Group C. The correlations of genera in Group A or B samples were simple compared with group C. Although the predominant eukaryotic genera in the three groups were consistent, the abundance of each gene varied among groups. Based on our findings, bioaugmentation of Baijiu fermentation with W. anomalus will change the ethyl acetate content and cause changes in the levels of other flavor substances. We suggest that the changes in flavor substances caused by the addition of W. anomalus are mainly due to changes in the microbial community structure that result from the addition of W. anomalus.
Collapse
Affiliation(s)
- Wenhua Wang
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Guangsen Fan
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zhilei Fu
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Xin Liang
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, China
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|