1
|
Liu H, Zhang L, Yu J, Shao S. Advances in the application and mechanism of bioactive peptides in the treatment of inflammation. Front Immunol 2024; 15:1413179. [PMID: 39247182 PMCID: PMC11377253 DOI: 10.3389/fimmu.2024.1413179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Inflammation is a normal immune response in organisms, but it often triggers chronic diseases such as colitis and arthritis. Currently, the most widely used anti-inflammatory drugs are non-steroidal anti-inflammatory drugs, albeit they are accompanied by various adverse effects such as hypertension and renal dysfunction. Bioactive peptides (BAPs) provide therapeutic benefits for inflammation and mitigate side effects. Herein, this review focuses on the therapeutic effects of various BAPs on inflammation in different body parts. Emphasis is placed on the immunomodulatory mechanisms of BAPs in treating inflammation, such as regulating the release of inflammatory mediators, modulating MAPK and NF-κB signaling pathways, and reducing oxidative stress reactions for immunomodulation. This review aims to provide a reference for the function, application, and anti-inflammation mechanisms of BAPs.
Collapse
Affiliation(s)
- Haiyang Liu
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, China
| | - Lulu Zhang
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, China
| | - Jingmou Yu
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| | - Shengwen Shao
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| |
Collapse
|
2
|
Jindal A, Patil N, Bains A, Sridhar K, Stephen Inbaraj B, Tripathi M, Chawla P, Sharma M. Recent Trends in Cereal- and Legume-Based Protein-Mineral Complexes: Formulation Methods, Toxicity, and Food Applications. Foods 2023; 12:3898. [PMID: 37959017 PMCID: PMC10649166 DOI: 10.3390/foods12213898] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Minerals play an important role in maintaining human health as the deficiency of these minerals can lead to serious health issues. To address these deficiencies, current research efforts are actively investigating the utilization of protein-mineral complexes as eco-friendly, non-hazardous, suitable mineral fortifiers, characterized by minimal toxicity, for incorporation into food products. Thus, we reviewed the current challenges in incorporating the cereal-legume protein-inorganic minerals complexes' structure, binding properties, and toxicity during fortification on human health. Moreover, we further reviewed the development of protein-mineral complexes, characterization, and their food applications. The use of inorganic minerals has been associated with several toxic effects, leading to tissue-level toxicity. Cereal- and legume-based protein-mineral complexes effectively reduced the toxicity, improved bone mineral density, and has antioxidant properties. The characterization techniques provided a better understanding of the binding efficiency of cereal- and legume-based protein-mineral complexes. Overall, understanding the mechanism and binding efficiency underlying protein-mineral complex formation provided a novel insight into the design of therapeutic strategies for mineral-related diseases with minimal toxicity.
Collapse
Affiliation(s)
- Aprajita Jindal
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (A.J.); (N.P.)
| | - Nikhil Patil
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (A.J.); (N.P.)
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore 641021, India
| | | | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (A.J.); (N.P.)
| | | |
Collapse
|
3
|
Jia M, Luo J, Gao B, Huangfu Y, Bao Y, Li D, Jiang S. Preparation of synbiotic milk powder and its effect on calcium absorption and the bone microstructure in calcium deficient mice. Food Funct 2023; 14:3092-3106. [PMID: 36919678 DOI: 10.1039/d2fo04092a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Calcium deficiency can lead to osteoporosis. Adequate calcium intake can improve calcium deficiency and prevent osteoporosis. Milk powder is the best source of dietary calcium supplements. Probiotics and prebiotics are considered to be beneficial substances for promoting calcium absorption. In this study, synbiotic milk powder (SMP) was prepared by combining the three, and its calcium supplementation effect and osteogenic activity were evaluated in calcium deficient mice. Through prebiotic screening experiments in vitro, after adding 1.2% iso-malto-oligosaccharide, the number of viable bacteria and the calcium enrichment of Lactobacillus plantarum JJBYG12 increased by 8.15% and 94.53% compared with those of the control group. Long-term calcium deficiency led to a significant reduction in calcium absorption and bone calcium content in mice, accompanied by structural deterioration of bone trabeculae. SMP significantly improved apparent calcium absorption, increased serum calcium and phosphorus levels, and decreased ALP activity and CTX-1 levels. In the meantime, the bone mineral density increased significantly, and the number of bone trabeculae and the proliferation and differentiation of osteoblasts also increased. SMP has good dietary calcium supplementation capacity and bone remodeling ability without significant side effects on major organs. These findings provide insights into using SMP as a dietary calcium source to improve bone health.
Collapse
Affiliation(s)
- Mingjie Jia
- School of Forestry, Northeast Forestry University, #26Hexing Road, Harbin 150040, PR China.
| | - Jiayuan Luo
- School of Forestry, Northeast Forestry University, #26Hexing Road, Harbin 150040, PR China.
| | - Bo Gao
- School of Forestry, Northeast Forestry University, #26Hexing Road, Harbin 150040, PR China.
| | - Yunpeng Huangfu
- School of Forestry, Northeast Forestry University, #26Hexing Road, Harbin 150040, PR China.
| | - Yihong Bao
- School of Forestry, Northeast Forestry University, #26Hexing Road, Harbin 150040, PR China. .,Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, PR China
| | - Dehai Li
- School of Forestry, Northeast Forestry University, #26Hexing Road, Harbin 150040, PR China. .,Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, PR China
| | - Shilong Jiang
- Heilongjiang Feihe Dairy Company Limited, Beijing 100015, PR China
| |
Collapse
|
4
|
Yuan X, Bao X, Liu X, Li X. Flaxseed-derived peptides ameliorate hepatic cholesterol metabolism in Sprague-Dawley rats fed a high-cholesterol and high-fat diet. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5348-5357. [PMID: 35318649 DOI: 10.1002/jsfa.11888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/26/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Plant peptides have been reported to have cholesterol-lowering activities. Previous research has found that ≤1 kDa flaxseed peptide (FP5 ) reduces cholesterol absorption and synthesis in vitro. In this research, we investigated the cholesterol-lowering activity of FP5 in Sprague-Dawley (SD) rats fed a high-cholesterol and high-fat diet. In addition, amino acid sequences of FP5 were determined by high-performance liquid chromatography-electrospray ionization-Orbitrap mass spectrometry. RESULTS FP5 supplement significantly decreased the serum and hepatic cholesterol levels and modulated the hepatic gene and protein expression of cholesterol metabolism-related enzymes or regulators (3-hydroxy-3-methylglutaryl coenzyme A reductase, Low-Density Lipoprotein Receptor (LDLR), Cholesterol 7 α-hydroxylase, Niemann-Pick C1-like 1, ATP-binding cassette transporters G5 and G8). Eleven peptides were identified from FP5 . These peptides were characterized as hydrophobic amino acids such as leucine (L), proline (P), glycine (G), isoleucine (I) and continuous sequences, including LP, LL, LG and II, with low molecular weights. CONCLUSION FP5 has a certain cholesterol-lowering activity in SD rats fed a high-cholesterol and high-fat diet. The possible mechanism for ameliorating hepatic cholesterol metabolism of FP5 includes inhibiting hepatic cholesterol de novo synthesis, promoting the synthesis and excretion of bile acids, and inhibiting the reabsorption of bile acids during enterohepatic circulation. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xingyu Yuan
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Xiaolan Bao
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Xiaojing Liu
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Xuexin Li
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| |
Collapse
|
5
|
Anti-Inflammatory Function of Plant-Derived Bioactive Peptides: A Review. Foods 2022; 11:foods11152361. [PMID: 35954128 PMCID: PMC9368234 DOI: 10.3390/foods11152361] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammation is considered to be a crucial factor in the development of chronic diseases, eight of which were listed among the top ten causes of death worldwide in the World Health Organization’s World Health Statistics 2019. Moreover, traditional drugs for inflammation are often linked to undesirable side effects. As gentler alternatives to traditional anti-inflammatory drugs, plant-derived bioactive peptides have been shown to be effective interventions against various chronic diseases, including Alzheimer’s disease, cardiovascular disease and cancer. However, an adequate and systematic review of the structures and anti-inflammatory activities of plant-derived bioactive peptides has been lacking. This paper reviews the latest research on plant-derived anti-inflammatory peptides (PAPs), mainly including the specific regulatory mechanisms of PAPs; the structure–activity relationships of PAPs; and their enzymatic processing based on the structure–activity relationships. Moreover, current research problems for PAPs are discussed, such as the shallow exploration of mechanisms, enzymatic solution determination difficulty, low yield and unknown in vivo absorption and metabolism and proposed future research directions. This work aims to provide a reference for functional activity research, nutritional food development and the clinical applications of PAPs.
Collapse
|
6
|
Sithole TR, Ma Y, Qin Z, Liu H, Wang X. Technical aspects of peanut butter production processes: Roasting and grinding processes review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tapiwa Reward Sithole
- College of Food Science and Technology & Institute of Special Oilseed Processing and Technology, Henan University of Technology Zhengzhou China
| | - Yu‐Xiang Ma
- College of Food Science and Technology & Institute of Special Oilseed Processing and Technology, Henan University of Technology Zhengzhou China
| | - Zhao Qin
- College of Food Science and Technology & Institute of Special Oilseed Processing and Technology, Henan University of Technology Zhengzhou China
| | - Hua‐Min Liu
- College of Food Science and Technology & Institute of Special Oilseed Processing and Technology, Henan University of Technology Zhengzhou China
| | - Xue‐De Wang
- College of Food Science and Technology & Institute of Special Oilseed Processing and Technology, Henan University of Technology Zhengzhou China
| |
Collapse
|
7
|
Akçay Kulluk D, Özcan MM, Gökmen Yılmaz F, Dursun N. Changes in mineral content in processed nuts, seeds, and fruits consumed as cookies. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Duygu Akçay Kulluk
- Department of Soil Science, Faculty of Agriculture Selcuk University Konya Turkey
| | - Mehmet Musa Özcan
- Department of Food Engineering, Faculty of Agriculture University of Selçuk Konya Turkey
| | - Fatma Gökmen Yılmaz
- Department of Soil Science, Faculty of Agriculture Selcuk University Konya Turkey
| | - Nesim Dursun
- Department of Soil Science, Faculty of Agriculture Selcuk University Konya Turkey
| |
Collapse
|
8
|
Bao X, Yuan X, Feng G, Zhang M, Ma S. Structural characterization of calcium-binding sunflower seed and peanut peptides and enhanced calcium transport by calcium complexes in Caco-2 cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:794-804. [PMID: 32898305 DOI: 10.1002/jsfa.10800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/15/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Peptide-Ca complexes can promote Ca absorption. The present study aimed to determine the transport mechanism and structural characteristics of sunflower seed and peanut peptides with high Ca binding capacity with respect to developing third-generation Ca supplements and functional food ingredients. RESULTS High Ca-binding fractions of 1-3 kDa sunflower seed peptide (SSP4 ) and ≥ 10 kDa peanut peptide (PP1 ) had higher amount of Ca transported than CaCl2 and two hydrolyzed proteins in Caco-2 cells. SSP4 and PP1 were separated by Ca ion metal chelate affinity chromatography, and high Ca-binding fractions were observed for SSP4 -P2 and PP1 -P2 . The amino acid sequences of SSP4 -P2 and PP1 -P2 were characterized by high-performance liquid chromatography-electrospray ionization-time of flight mass spectrometry. Seven and eight peptides were identified from SSP4 -P2 and PP1 -P2 , respectively. These peptides had molecular weights ranging from 1500 Da to 2500 Da and a large number of characteristic amino acid sequences, such as EEEQQQ, EQ-QQQ-QQ, QQ-QQQQQ, E-EEE, EE-EEQ, RR, Q-QQ-QQQ, EE-EQ-EE-Q, QQ-QQQQ, and Q-QQQQ, where 'E' is glutamic acid and 'Q' is glutamine. CONCLUSION SSP4 and PP1 can promote Ca transport in Caco-2 cells without affecting cell permeability. The amino acid sequences of SSP4 -P2 and PP1 -P2 with high Ca-binding abilities contain characteristic sequences, such as continuous glutamic acid and glutamine, and have low molecular weights. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaolan Bao
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Xingyu Yuan
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Guoxue Feng
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Meili Zhang
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Sarina Ma
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|