1
|
Tu X, Yin S, Zang J, Zhang T, Lv C, Zhao G. Understanding the Role of Filamentous Actin in Food Quality: From Structure to Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11885-11899. [PMID: 38747409 DOI: 10.1021/acs.jafc.4c01877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Actin, a multifunctional protein highly expressed in eukaryotes, is widely distributed throughout cells and serves as a crucial component of the cytoskeleton. Its presence is integral to maintaining cell morphology and participating in various biological processes. As an irreplaceable component of myofibrillar proteins, actin, including G-actin and F-actin, is highly related to food quality. Up to now, purification of actin at a moderate level remains to be overcome. In this paper, we have reviewed the structures and functions of actin, the methods to obtain actin, and the relationships between actin and food texture, color, and flavor. Moreover, actin finds applications in diverse fields such as food safety, bioengineering, and nanomaterials. Developing an actin preparation method at the industrial level will help promote its further applications in food science, nutrition, and safety.
Collapse
Affiliation(s)
- Xinyi Tu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| | - Shuhua Yin
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| | - Tuo Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, People's Republic of China
| |
Collapse
|
2
|
Wang H, Zhang H, Liu Q, Xia X, Chen Q, Kong B. Exploration of interaction between porcine myofibrillar proteins and selected ketones by GC–MS, multiple spectroscopy, and molecular docking approaches. Food Res Int 2022; 160:111624. [DOI: 10.1016/j.foodres.2022.111624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 01/14/2023]
|
3
|
Wang Z, Niu Y, Zhao S, Tian Y, Yu K, Yamashita T, Youling X, Yuan C. Thermal stability of actin of silver carp (
Hypophthalmichthys molitrix
) harvested in summer and winter as affected by myosin complexation. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zhuolin Wang
- United Graduate School of Agricultural Sciences Iwate University, Ueda 3‐18‐8, Morioka Iwate Japan
| | - Yabin Niu
- United Graduate School of Agricultural Sciences Iwate University, Ueda 3‐18‐8, Morioka Iwate Japan
| | | | - Yuanyong Tian
- College of Food Science and Technology Dalian Ocean University Dalian China
| | - Kefeng Yu
- Faculty of Agriculture Iwate University Iwate Japan
| | | | - Xiong Youling
- Department of Animal and Food Sciences University of Kentucky Lexington KY United States
| | - Chunhong Yuan
- Faculty of Agriculture Iwate University Iwate Japan
- Agri ‐ Innovation Center Iwate University Iwate Japan
| |
Collapse
|
4
|
Xu Y, Lv Y, Yin Y, Zhao H, Yi S, Li X, Li J. Impacts of yeast β‐glucan on thermal aggregation and flavour adsorption capacity of Spanish mackerel myosin. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yongxia Xu
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Yanan Lv
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Yiming Yin
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Honglei Zhao
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Shumin Yi
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Xuepeng Li
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Jianrong Li
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| |
Collapse
|
5
|
Effect of deacetylated konjac glucomannan on heat-induced structural changes and flavor binding ability of fish myosin. Food Chem 2021; 365:130540. [PMID: 34256229 DOI: 10.1016/j.foodchem.2021.130540] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/19/2021] [Accepted: 07/04/2021] [Indexed: 11/20/2022]
Abstract
This work investigated the effects of deacetylated konjac glucomannan (DKGM) on heat-induced structural changes and flavor binding in bighead carp myosin. DKGM could cross-link with fish myosin to form a thermostable complex and improve the gel strength of myosin. The incorporation of DKGM increased the surface hydrophobicity and total sulfhydryl content of heat-induced myosin. Increasing DKGM concentrations resulted in a decrease in the absolute zeta potential and a continuous increase in particle size. DKGM addition significantly reduced the α-helical content of myosin with a concomitant increase in β-sheet, β-turn, and random coil content. The binding abilities of myosin to flavors were significantly enhanced by increasing amounts of DKGM, attributing to the accelerative unfolding of myosin secondary structures and the exposure of additional hydrophobic and thiol binding sites. Increased numbers of available hydroxyl groups after DKGM treatment could also cause an increase of flavor adsorption by hydrogen bonding.
Collapse
|
6
|
He Y, Zhou C, Li C, Zhou G. Effect of incubation temperature on the binding capacity of flavor compounds to myosin. Food Chem 2021; 346:128976. [PMID: 33476948 DOI: 10.1016/j.foodchem.2020.128976] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/02/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022]
Abstract
This study was aimed to investigate the effect of incubation temperature on the binding of hexanal, octanal and 3-methylbutyraldehyde to myosin. Fluorescence quenching, Fourier transform infrared spectroscopy, surface plasmon resonance (SPR), isothermal titration calorimetry (ITC) and gas chromatography-mass spectrometry (GC-MS) were employed. An increase in aldehyde concentration led to a reduction in fluorescence intensity in myosin. SPR revealed that the interactions were involved in a rapid combination and dissociation, and the dissociation constants significantly decreased from 25 to 37 °C. ITC showed that the values of entropy, enthalpy and Gibbs free energy were negative. The interactions were driven by hydrogen bonds and van der Waals forces. GC-MS further demonstrated that the highest binding capacity occurred at 37 °C between myosin and aldehydes. The findings provide a new insight into the mechanism on controlling or maintaining meat flavor.
Collapse
Affiliation(s)
- Yujia He
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Changyu Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
7
|
Chen J, Zhang X, Chen Y, Zhao X, Anthony B, Xu X. Effects of different ultrasound frequencies on the structure, rheological and functional properties of myosin: Significance of quorum sensing. ULTRASONICS SONOCHEMISTRY 2020; 69:105268. [PMID: 32731126 DOI: 10.1016/j.ultsonch.2020.105268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/02/2020] [Accepted: 07/19/2020] [Indexed: 05/08/2023]
Abstract
Structure and rheological properties of myosin in myofibrillar protein (MP) after single frequency pulsed ultrasound (SFPU, G1-G2) and dual frequency pulsed ultrasound (DFPU, G3) were compared for the first time. Results showed SFPU and DFPU induced "stress response" through the action of cavitation on multiple myosin. In addition, there may be a certain quorum sensing among myosin, inducing a more stable β-antiparallel structure to resist negative effects of cavitation force. Results of particle size and synchronous fluorescence indicated that structure of myosin in MPs changed through stress. The increase in pH also assisted in the ultrasound process (G5-G7). Notably, DFPU induced stronger quorum sensing and formed a more stable structure. More so, effects of (-)-epigallocatechin-3-gallate (EGCG) and baicalein (BN) on the emulsion and gel properties of DFPU treated and non-treated MPs were also investigated. Results showed that ultrasound increased the stability of emulsion. Additionally, the texture and expressible moisture content (EMOC) of the gel were also improved after treatment.
Collapse
Affiliation(s)
- Jiahui Chen
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Zhang
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University, Aachen 52074, Germany
| | - Yan Chen
- School of Mathematical Sciences, Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue Zhao
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bassey Anthony
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|